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PRACTICAL AND EFFICIENT RAY TRACING IN TWO-DIMENSIONAL MEDIA
FOR RAPID TRAVELTIME AND AMPLITUDE FORWARD MODELLING

C.A. ZELT! AND R.M. ELLIS?

ABSTRACT

An algorithm for tracing rays and calculating amplitudes in
two-dimensional media based on a new velocity-model parame-
terization has been developed. The simple, layered, large-block
parameterization in which velocity is an analytic function of
position allows for computationally efficient ray tracing. The
user’s ability to specify simple kinematically similar ray fami-
lies permits practical and rapid forward modelling of refraction
data. In addition, the routine allows for S-wave propagation
including converted phases, multiple and surface reflections,
approximate attenuation, head waves, and a reverse ray-direc-
tion amplitude calculation important for the interpretation of
common-receiver profiles. The source may emit both P- and S-
type rays and the ratio of P-wave to S-wave amplitude at the
source may be specified. Amplitude calculations are based on
zero- and first-order asymptotic ray theory.

The velocity model is parameterized in terms of a sequence
of quasi-horizontal layers, each layer separated by a boundary
consisting of straight-line segments. Layer thicknesses may be
reduced to zero to model pinch-outs or isolated bodies. Each
layer is broken up laterally into a series of large trapezoidal
blocks with vertical left and right sides and upper and lower
boundaries of arbitrary dip. The velocity structure within each
trapezoid is defined by a single upper and lower velocity such
that the velocity varies linearly from the upper to lower bound-
ary along a vertical path.

The major attributes of the routine are illustrated with four
examples: a comparison of efficiency and accuracy with the
Spence et al. algorithm, a practical application to the interpreta-
tion of observed crustal refraction profiles from the Peace River
Arch region, a complex subduction zone model to illustrate the
degree of lateral inhomogeneity possible with the routine’s
model parameterization, and a demonstration of how the routine
may be used to study the effects of near-surface velocity anoma-
lies on CMP data.

INTRODUCTION

The interpretation of crustal seismic refraction data is
generally carried out using a trial-and-error forward-mod-
elling approach based on two-dimensional ray tracing
(e.g., Spence et al., 1985; Mereu et al., 1986; Meltzer et

al., 1987). The theoretical traveltime and amplitude
response of a laterally inhomogeneous medium are
repeatedly compared with observed record sections until
a model is constructed which provides a satisfactory
match between calculation and observation. This itera-
tive, forward-modelling approach is necessary because no
inversion scheme exists which is capable of providing
geologically reasonable models in laterally varying media
for a typical crustal refraction data set. Thus, an appropri-
ate algorithm for forward modelling must be capable of
accurately calculating the traveltimes and amplitudes
associated with a general two-dimensional model in an
efficient and practical manner to allow for many trials.

A number of algorithms based on asymptotic ray theory
(éerveny et al., 1977) have been developed and widely
used, each satisfying the above-mentioned requirements to
varying degrees. These algorithms include those of
McMechan and Mooney (1980), éervenj' and Psencik
(1981), Cassell (1982) and Spence et al. (1984).
Numerous more accurate but less efficient techniques for
forward modelling in one-, two- and three-dimensional
media exist and are necessary for detailed studies of par-
ticular wave-propagation problems and as a final check
on models obtained using the ray method; however, rou-
tines based on the ray method are at present the only eco-
nomical and practical choice for the interpreting seismol-
ogist. This paper presents a routine based on the ray
method which possesses similar advantages and limita-
tions of other algorithms but offers greater practicality.

The fundamental feature of the new routine is its sim-
ple, layered, large-block velocity model parameterization.
This allows for efficient ray tracing. And since one
requires a minimum number of parameters to define the
model completely, changes to it can be made quickly by
the user. Rapid forward modelling is achieved by allow-
ing the user to select simple kinematic ray families for
exploring a part of the model of interest. In addition, a
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number of simple features have been incorporated into
the routine to expand its flexibility and range of applica-
bility. These features include S-wave propagation and
converted phases, approximate attenuation, head waves,
and a reverse ray-direction amplitude calculation suitable
for the interpretation of common-receiver profiles.

VELOCITY MODEL PARAMETERIZATION

Ray-tracing algorithms are most strongly characterized
by their velocity model parameterization. The degree of
accuracy, practicality and efficiency of a particular rou-
tine is ultimately linked to the parameterization, with
some degree of compromise between these three key
attributes. The velocity model of the routine presented
here can be described as a simple, layered, large-block,
two-dimensional parameterization. In addition, the medi-
um is assumed to be isotropic with lateral homogeneity in
a direction normal to the plane of the model. The model
is composed of a sequence of quasi-horizontal layers, the
layers separated by boundaries which must cross the
model from left to right without crossing another bound-
ary. Each boundary is defined by an arbitrary number of
points connected by straight-line segments of arbitrary
dip.

Within each layer, the P-wave velocity structure is
defined by specifying a single upper and lower layer
velocity for each straight-line segment of the upper layer
boundary. The upper and lower velocity pair may vary
laterally within the layer (e.g., Figure 6a). Vertical bound-
aries separate each layer into large blocks and the
emplacement of these boundaries is performed automati-
cally by the routine as a requirement of the model param-
eterization. Vertical boundaries are necessary at each of
the following points within a layer: (1) changes in slope
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of the line segments of the upper layer boundary, (2)
changes in slope of the line segments of the lower layer
boundary, and (3) changes in the upper or lower velocity
within the layer. As a result of the vertical boundaries,
each layer is broken up laterally into a series of large
trapezoidal blocks with vertical left and right sides and
upper and lower boundaries of arbitrary dip (Figure 1).

The velocity at a point within a trapezoid is determined
by linear interpolation between the upper and lower
velocity along a vertical path. For a trapezoid bounded
above and below by line segments whose equations in the
x-z plane are

z=mx + b, and z = myx + b,

the P-wave velocity, vy, at the point (xy, zy) within the
trapezoid is given by

vo = [(vimy — vom)xg + (Vo= v)zg

+ (vihy = vob ) I/[(my— my)xg + (b — by)] ()

where v, and v, are the upper and lower velocities,
respectively, within the trapezoid (Figure 1). The S-wave
velocity is obtained from the P-wave velocity given in
equation (1) using an assigned Poisson’s ratio which may
vary throughout the model but is constant within each
trapezoidal block.

There are a number of advantages to having a large-
block, trapezoidal model parameterization with constant
velocities along the upper and lower boundaries: (1) a
wedge-shaped structure with a vertical and horizontal
velocity gradient can be modelled, (2) velocity disconti-
nuities across layer boundaries can be readily incorporat-
ed into the model, (3) layer boundaries can be modelled
as horizontal, dipping, or with considerable topographic
relief through an appropriate combination of straight-line
segments, (4) layers whose boundaries have considerable

. | L
....... B e e
' | ! | | I | |
— | ____ﬂl ______ ’ Z:n'il)“.bl | | !
T T B
&_ | V. |
I 2 |
I Sl = RS mm—————— .
..9 i : i z_m2x+b2 i ‘I T
e e
N B T pommme
.---—"""""-—-— | :
| |

Fig. 1. An example velocity model consisting of 5 layers and 27 trapezoidal blocks. The velocity, v, at the point (x, z;) is given by equa-

tion (1).
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topographic structure can be assigned a single constant
velocity along the full extent of the upper and/or lower
boundary, (5) a trapezoid can be of sufficiently general
shape so that a minimum number are required to repre-
sent typical earth models, and, therefore, the trapezoids
will, on average, be large blocks within the model, and
(6) the layered, large-block character of the model results
in a nonuniform but consistent grid so that the position of
a single boundary point can be adjusted and the velocity
model remains consistent.

The algorithm allows for layers to shrink to zero thick-
ness so that pinch-outs or isolated bodies can be consid-
ered. However, within a trapezoid adjacent to the pinch-
out at the point where the layer thickness shrinks to zero,
the velocity will be undefined if the upper and lower
velocities within the trapezoid are unequal. To avoid an
undefined velocity, an equal upper and lower velocity
within the adjacent trapezoid is specified.

RAY TRACING

To trace rays through the velocity model, the ray-trac-
ing equations are solved numerically (cf. Cerveny et al.,
1977; McMechan and Mooney, 1980). The two-dimen-
sional ray-tracing equations solved by the routine are a
pair of first-order ordinary differential equations; there
are two sets:

3: = cot0 %i:lanﬁ
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with initial conditions
X=Xp 2= Zg, 0= 9(]

[éer\'eny et al., 1977, equations 3.19 and 3.19’]. The vari-
able 0 is the angle between the tangent to the ray and the
z-axis, v is velocity, and v, and v, are partial derivatives
of velocity with respect to x and z, respectively. The point
(xg. zg) is the source location and 8 is the ray take-off
angle. To ensure stability, system (2a) is solved with x as
the integration variable when the raypath is near-horizon-
tal, and system (2b) is solved with z as the integration
variable when the raypath is near-vertical. To solve either
system, the routine uses the Runge-Kutta method (Sheriff
and Geldart, 1983, pp. 157-158) with error control as sug-
gested by Cerveny et al. (1977). To complete the ray-trac-
ing algorithm, Snell’s law must be satisfied at each point
of intersection of a ray with a model boundary.

The ray step length, A, used in solving system (2a) or
(2b) is an increment in either the x or z direction, respec-
tively, and is given by the relationship

o
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where o is a user-specified constant which will be dis-
cussed further with reference to the examples. An exami-

nation of equation (3) reveals the following: if the local
derivative of the velocity field is large, the corresponding
step length will be small, and vice versa. This approach is
based on the realization that strong ray bending will
occur if the ray is under the influence of a strong velocity
gradient, whereas raypaths are essentially straight lines if
the local velocity gradient is near zero. Thus, equation (3)
is used to adjust the ray step length at each point so as to
maximize efficiency while maintaining accuracy by
avoiding unnecessarily small step lengths when the ray
bending is small and the potential inaccuracy due to the
use of a large step length when the ray bending is large. If
the velocity within a trapezoid is constant, no ray bending
occurs, the raypath is calculated analytically and the
numerical solution of system (2a) or (2b) is avoided.
Since the velocity, given by equation (1), and its partial
derivatives are analytic functions of position, systems
(2a) and (2b) can, in conjunction with equation (3), be
solved efficiently.

Once a ray has been traced through the model, it is
defined by a series of points, the spacing and number of
points being dependent on the value of o used in equation
(3). The total traveltime at the ray endpoint is then evalu-
ated by simple numerical integration along the raypath
using the trapezoidal rule.

Rapid forward modelling is accomplished through the
routine’s ability to search for the take-off angles of spe-
cific kinematic ray families. For a specific model layer,
three types of ray families can be searched for: (1) rays
which turn (refract) within the layer, (2) rays which
reflect off the bottom of the layer, and (3) the ray which
generates head waves along the bottom of the layer
(Figure 2). For a turning ray family, the search mode
seeks the take-off angles of the shallowest and deepest
rays to turn within the layer. Once the take-off angles of
these two rays have been determined within a prespeci-
fied distance, or a maximum allowable number of rays
have been traced in the search mode, the entire ray family
consisting of a specified number of rays with take-off
angles between the shallow- and deep-ray take-off angles
is traced. For a reflected ray family, the search mode
seeks the take-off angle of the ray with the smallest take-
off angle (measured from the horizontal) which reflects
off the bottom of the specified model layer. Once this
take-off angle is appropriately determined, the complete
family consisting of a specified number of rays with take-
off angles between the smallest reflected take-off angle
and a prespecified maximum take-off angle, typically
near 90°, is traced. In order to generate head waves along
a layer boundary, the search mode seeks the ray which
intersects the bottom of the layer at a critical angle, with-
in a prespecified tolerance (cf. Whittall and Clowes,
1979). To trace the complete head-wave family, rays
emerging at the critical angle are traced upward from the
layer boundary and at a spacing specified by the user. In
an analogous manner, a general diffracted ray family, in
which the rays traced upward from the layer boundary
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Fig. 2. Example of the three simplest kinematic ray families for a single layer (layer 4) of a 5-layer model. (a) Turning rays (ray code 4.1);

(b) reflected rays (ray code 4.2); (c) head waves (ray code 4.3).
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emerge at the angle of incidence of the generating ray,
may be traced. This family may be used, for example, to
model the kinematics of diffractions which travel along
the top of a low-velocity layer and occur as first arrivals
within the geometrical shadow. The generating ray in this
case is the first ray of the reflected ray family in the layer
above the low-velocity zone.

The manner in which the search mode operates in its
search for any one of the four basic ray types is similar,
so that only one will be considered in detail. Consider the
case of determining the take-off angle of the shallowest
ray to turn within a specified layer. If the medium were
laterally homogeneous, this take-off angle, ¢,, measured
from the horizontal in degrees, would be given by

g =90° — sin-1(vy/v) (4)

where v is the velocity at the source and v is the velocity
at the top of the specified layer. This take-off angle is
used as a starting value in the search mode where v is the
velocity at the top of the layer directly beneath the
source. If the value of v is not the maximum velocity
between the source and the top of the layer along a verti-
cal path directly beneath the source, the value of v in
equation (4) is replaced by this maximum velocity. If all
velocities between the source and the top of the layer are
less than or equal to the velocity at the source, a prespeci-
fied minimum take-off angle is used as the initial take-off
angle in the search mode.

An initial ray with a take-off angle ¢ is traced to its
turning or reflection point. Within the search mode, rays
are generally traced only to their turning or reflection
points. However, if the model is strongly two-dimension-
al, it may in some cases be necessary to trace rays to their
completion in order to determine correctly the appropri-

ate take-off angles; a switch allows the user to select this
option. A second ray is traced with a take-off angle of ¢
+ 8¢ if the initial ray did not enter the layer specified, or
&y — 8¢ if the ray entered the layer. The quantity &¢ is a
prespecified fraction of the quantity |¢’,— ¢,/ where ¢’
is the initial take-off angle used in the search for the
deepest turning ray in the layer. A third ray will be traced
with a take-off angle of ¢y + 2389 if both of the first two
rays either did not enter the layer (+) or did enter the
layer (=), or ¢y £ !/,00 if the first ray did not enter the
layer, but the second did (+) or vice versa (—). Thus, when
two raypaths bracket the upper layer boundary, a bisec-
tion of angles begins, but until this point the take-off
angles are incremented by 3¢ (Figure 3).

The maximum number of rays traced in the search
mode is specified by the user but will be terminated
before this number if the distance between the endpoints
of two successive rays is less than a prespecified
distance. Typically, ten rays are sufficient to define accu-
rately a specific take-off angle; however, for strongly
two-dimensional models, twenty or more rays may be
necessary. The search routine has been found through
experimentation to work successfully and efficiently for
models with strong lateral variations. Take-off angles can
also be supplied manually by the user.

The three basic kinematic ray families obtained by the
search mode can each be modified through simple numer-
ical codes and switches to include any number or combi-
nation of multiple reflections, free-surface reflections,
and P-S or S-P conversions at any layer boundary. There
is no restriction on the location of shotpoints within the
model. Rays from multiple shots may be traced in a sin-
gle run so that the corresponding fit of the theoretical to
observed data can be monitored simultaneously for all
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Fig. 3. The first seven rays traced in a hypothetical search for the shallowest ray to turn in the lower layer. The solid line is the model

boundary separating the upper and lower layer.
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shotpoints along a particular line. For shotpoints located
below the model surface, rays may also be traced
upwards. Receiver locations are assumed to be at the top
of the model.

The search routine is based on the determination of ray
families composed of kinematically similar rays, as
opposed to two-point ray tracing in which rays are traced
to specific receiver locations (cf. Cassell, 1982). A ray-
family search is a superior approach when forward mod-
elling since a particular region of interest within the
model can be examined through specification of the
appropriate ray families. Therefore, when constructing a
velocity model, the interpreter can begin model construc-
tion at the earth’s surface and proceed downwards,
matching arrivals from progressively deeper layers within
the earth. The traveltime (and amplitude) associated with
an arbitrary point on the earth’s surface are determined by
linearly interpolating across the endpoints of the two
closest rays which bracket the point of interest. For mod-
els with strong lateral variations, it may be necessary to
trace relatively more rays in order to obtain accurate
interpolated traveltimes and amplitudes.

AMPLITUDE CALCULATIONS

The complex amplitude of turning and reflected rays,
possibly multiply reflected and/or converted, is calculated
by zero-order asymptotic ray theory [fbrvenjr etal., 1977,
equation (2.56)] as given by the expression

A=Ayg-1551L (5)

where A is the amplitude of the ray at its endpoint, A is
the initial ray amplitude, ¢ is a factor which accounts for
the energy partitioning at model boundaries, and L is the
geometrical spreading. The factor € is equal to the num-
ber of times the direction of positive displacement
changes along SV segments of the raypath with respect to
the ray-coordinate system (éerveny and Ravindra, 1971,
pp- 72-73). A point source with uniform directional char-
acteristics is assumed.

The initial ray amplitude is set equal to unity so that
the amplitude, A, is a relative amplitude; however, the
ratio of SV- to P-wave energy generated by the source
can be specified. The quantity g is given [Cerveny et al.,
1977, equation (2.58)] by:

s et (i
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where:

n = number of model boundaries encountered by ray;

Vo, Pg = velocity and density at the source whose prod-
uct is impedance;

v,.p, = impedance at the receiver;

v;p; = impedance at the point of incidence at the ith
boundary;

v';p’; = impedance at the point of emergence at the ith

boundary;

Z; = Zoeppritz displacement-amplitude coefficient at
the ith boundary.

The relationship between density, p, and P-wave veloc-
ity, v,, can be specified in two ways:

p=0.252+ 0.3788v ; p=1732vy;
(Birch, 1964; Gardner et al., 1974). The complex
Zoeppritz displacement-amplitude coefficients for inci-
dent P- and SV-waves are calculated using a routine based
on that described by Young and Braile (1976) which
allows for the calculation of surface reflection coeffi-
cients, but has been modified to allow for the calculation
of surface conversion coefficients of vertical- and hori-
zontal-component type for incident P- and S-type rays
[éerveny and Ravindra, 1971, equations (2.89) and
(2.90)].

The geometrical spreading is given by

L= (LlLu)'_l‘f[ { e JT

s
i cost

where L is the out-of-plane spreading, L|| is the in-plane
spreading, and the product term represents a compensa-
tion for the discontinuity in the spreading functions
across model boundaries (Cerveny et al., 1977, p.38). The
angles 0; and 0'; are taken at the point of incidence and
emergence at the ray’s intersection with the ith model
boundary. The out-of-plane spreading can be expressed as

£ = v 7

L
0
where [ is the raypath length [Cerveny and Hron, 1980;
Cerveny, 1981, equation (31)]. The integral in equation (7)

is evaluated using the trapezoidal rule. The in-plane
spreading is given by

or 8
L= cosal === (8)
[[=H 50

0

where 0, is the angle between the vertical and the raypath
at the receiver, r is the distance between the source and
receiver (range), and 8y is the angle between the vertical
and the raypath at the source (take-off angle) [(:"crvenji et
al., 1977, equation (3.69)]. The evaluation of the deriva-
tive in equation (8) can be made through an examination
of the kinematics of a set of similar rays. The approach
used is most like that used by Marks (1980). To evaluate
the derivative, a separate cubic spline is fit to each pro-
grade and retrograde segment of the curve defined by
range versus take-off angle for all rays of the same kine-
matic family and the derivative for each ray in the family
can be obtained directly from the splines. The advantage
of this approach is that additional rays, beyond those
already traced for the family, do not have to be traced, as



22 C.A. ZELT AND R.M. ELLIS

is necessary with other routines. A limitation is that for
strongly two-dimensional models, the slope of the cubic
spline may be sensitive to the number of rays which con-
stitute the family. The greater the lateral inhomogeneity
of the model, the greater the number of rays which must
be traced in order to fully sample all aspects of the lateral
variation of the model. For most models which have been
studied, 10 to 20 rays per family were sufficient.

For the interpretation of common-receiver profiles,
often encountered in marine OBS studies, it is necessary
to calculate amplitudes in the reverse direction to which
rays are traced. A reverse-ray-direction amplitude calcu-
lation is accomplished by switching the source and
receiver quantities and incident and emergent quantities
in equation (6) and adjusting the geometrical spreading
by a factor dependent on the source and receiver veloci-
ties [(Richards, 1971, equation (18)]. These adjustments
are made since the reciprocity of amplitudes is not neces-
sarily preserved by the approximations of ray theory
(Razavy and Lenoach, 1986). In addition, the surface
conversion coefficient must be calculated at the ray
source.

In most practical situations, the modelling of head
waves is not required as turning rays in the lower medium
dominate. However, in some instances topographic struc-
ture on a layer boundary can result in a shadow zone with
respect to turning rays in the lower medium. In this case,
head waves will represent the first arrivals at certain
receiver locations. The routine allows for the calculation
of P and SV head-wave amplitudes through first-order
asymptotic ray theory assuming the layer, along the top
of which the wave propagates, has zero velocity gradient.
At present, the routine requires that the raypaths toward
and away from the head-wave boundary do not contain
reflection or conversion points.

The calculation of head-wave amplitudes is made in
the same manner as that of Spence et al. (1984); however,
no explicit reparameterization of the velocity model into
a series of thin homogeneous layers is required since the
region between each point defining the raypath toward
and away from the head-wave boundary can be consid-
ered a homogeneous layer if the average velocity between
points is used as the layer velocity. The head-wave ampli-
tude, AH, is given by [éervenjf and Ravindra, 1971, equa-
tions (5.22) and (5.29)]:

; VI tan®, el
A = _ B l - l—[ Zi (9)
flm!-(\"k\')-LlL" :;
where
H ; = vaf_ H vi‘%k_lcosei
Li=|lg—+Y——|: Li=|5|II—:
! - 1/ 7. cosB,

N = number of line segments comprising the complete

head-wave raypath;

0;, 8 = angle of incidence and emergence at the ith
boundary;

v; = velocity along the ith ray segment;

[; = length of ith ray segment;

k = head-wave boundary number;

v = velocity below head-wave boundary;

[ = length of raypath along head-wave boundary;

® = dominant frequency of head waves;

I'y = head-wave coefficient (écrveny and Ravindra,

1971, pp. 108-109).
The Zoeppritz routine has been modified to include the
computation of the head-wave coefficient. If the velocity
below the head-wave boundary varies laterally, the value
of v is set equal to the appropriate average value. At the
critical point, the value of / equals zero so that the corre-
sponding ray amplitude is undefined. To avoid this prob-
lem, an ad-hoc approach used by Spence (1983) is incor-
porated which assures that the value of / used in equation
(9) remains greater than a prespecified minimum value.
Therefore, the head-wave amplitude within the zone of
interference with the reflected ray is not valid. At present
the routine does not allow for the calculation of ampli-
tudes for the general diffracted-ray family described ear-
lier; however, this would be possible if an angle-depen-
dent diffraction coefficient were incorporated into a for-
mula similar to equation (9).

The effect on amplitudes due to attenuation can be con-
sidered in an efficient manner by the routine through a
major simplifying assumption: the attenuation is indepen-
dent of frequency. For each ray traced, the attenuation is
calculated at a specified dominant frequency and this
attenuation is applied equally at all frequencies. This
results in the incorporation of a single multiplicative
scale factor into equations (5) and (9) so that the coupled
phenomenon of dispersion is neglected. The scale factor,
Ag, is given by (Aki and Richards, 1980, pp. 168-169):

N
A o= [lexp[- 01,/2v,0)]
=1

where:

N = number of line segments comprising the complete
raypath;

® = dominant frequency;

I; = length of the ith ray segment;

v; = average velocity along the ith ray segment;

Q; = Q-attenuation value along ith ray segment.
This approximate method can be expected to be a good
approximation to a more accurate frequency-dependent
calculation if the source energy is assumed to be concen-
trated within a narrow frequency band or the attenuation
is not large. P- and S-wave Q values can be assigned to
each model block.

Once the amplitude calculations for all rays which
reached the model surface are complete, synthetic seis-
mograms for a set of specified surface locations can be
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generated. The approach used is similar to that used by
McMechan and Mooney (1980) and Spence et al. (1984).
The time and complex amplitude of all arrivals on a par-
ticular seismogram are obtained by linearly interpolating
across the endpoints of the two closest rays which bracket
the seismogram location and are of the same kinematic
ray type. A superposition of all arrivals on the seismo-
gram results in a trace consisting of a series of impulses,
each with appropriate amplitude and phase shift. The
final seismogram is obtained through a convolution with
an apparent source function.

EXAMPLES

The routine presented in this paper is based on the ray
method and as such the accuracy and limitations of its
dynamic calculations are similar to all other ray-tracing
routines. For a thorough discussion of the limitations of
the ray method and its comparison to other more accurate
methods, the reader is referred to écrvenjz (1985). The
following examples are not intended to show the weak-
nesses of the ray method, but rather the positive aspects
of the new routine as a practical forward-modelling algo-
rithm. All computations were performed on a 12-Mips
Amdahl 5860 computer.

Efficiency and accuracy

The first example illustrates the routine’s efficiency
and accuracy as compared to the algorithm of Spence et
al. (1984), an extension of the Whittall and Clowes
(1979) ray tracer in which the model is parameterized in
terms of large polygonal blocks within which the velocity
gradient vector is constant. Since the Spence et al. algo-
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rithm uses analytic expressions to trace rays and calculate
traveltimes, these quantities may be considered to be
exact with respect to ray theory. Therefore, a comparison
of these values with the new routine’s will reveal the
degree of inaccuracy associated with solving the ray trac-
ing and traveltime equations numerically. As a check on
the routine’s amplitude calculations, numerous models
were tested and the results showed close agreement with
those obtained from the Spence et al. algorithm. Due to
the manner in which the new routine and that of Spence
et al. parameterize velocity models, only models in which
the boundaries are horizontal or vertical can be com-
pared.

The model chosen for the comparison study is a gener-
alized earth model consisting of three layers (Figure 4a).
The three layers represent sediment, crust and upper man-
tle and the velocity structure within each layer has been
broken up laterally into six blocks. Two different numeri-
cal tests were made with this model: a study of the trade-
off between CPU time and rms traveltime error, measured
against the Spence et al. algorithm, as a function of ray
step length; and a comparison of the CPU time required
for a number of different types of runs of the two rou-
tines. In all cases, a total of 100 rays were traced through
the model — 25 turning rays in each layer and 25 rays
reflected off the crust-mantle boundary. For some runs of
the new routine, additional rays were traced in the search
mode to demonstrate the extra CPU time required. Figure
4b shows the 100 rays traced through the model by the
new routine; and the corresponding traveltime curves and
synthetic section are shown in Figures 4c and 4d.

Figure 5 shows the trade-off between accuracy and
CPU time. The value of the step-length parameter, o,
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Fig. 4. Example in which the efficiency and accuracy of the new routine is studied. (a) Velocity model consisting of three layers with six
blocks in each layer. The upper and lower velocity in km/s is indicated within each model block. (b) One reflected and three turning ray
families traced through the model. (¢) Reduced traveltime curves corresponding to the rays traced in (b). (d) Synthetic section corre-
sponding to the rays traced in (b). The source wavelet is a single-cycle sine wave. The trace amplitudes have been scaled by a factor

proportional to distance.



24 C.A. ZELT AND R.M. ELLIS

used in equation (3) was varied between 0.4 and 0.0075.
In all runs, amplitudes were not calculated and no plots
were generated. Also, a maximum of 20 additional rays
were traced in the search mode to define the take-off
angles of each ray family.

One might expect the CPU time to increase monotoni-
cally and the rms error to decrease monotonically as the
value of o decreases. This is the general trend observed;
however, a minimum CPU time occurs at oo = 0.15 and a
minimum rms error occurs at o = 0.015. The CPU time
minimum is due to two factors. First, regardless of the
value of o used, a constant single-step tolerance is used
in the Runge-Kutta routine. Therefore, for relatively large
step lengths, the number of subintervals required by the
Runge-Kutta routine may become large. Second, the
search mode does not operate effectively when too large a

value of o is used. This results in relatively more rays
traced in the search mode. The minimum in rms travel-
time error is also due to two factors. The fixed single-step
tolerance used in the Runge-Kutta routine does not allow
for increased accuracy when relatively small step lengths
are used. Also, the accumulated round-off error of this
single precision routine prevents increased accuracy with
decreased step length.

Figure 5 shows that the CPU time increases by a factor
of about five for a corresponding decrease in the value of
o of about fifty. The variations in the rms traveltime error
are perhaps more important and should be considered
when selecting an appropriate value of o. Typically,
crustal refraction data will have a traveltime measure-
ment uncertainty of between 10 and 20 ms. Therefore, a
value of o less than about 0.15 should be sufficient in
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Fig. 5. Trade-off between accuracy and CPU time as a function of the ray step-length parameter, a, used in equation (3).
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most cases (Figure 5). Also, values of o less than about
0.05 increase the CPU time required without significantly
improving accuracy. Finally, the CPU time and rms error
minimums suggest that for this model, and probably all
models that are normally considered, the value of o
should be between 0.015 and 0.15.

The number of points defining rays increases as the
value of o decreases. For this example, the ray defined by
the greatest number of points was, in each run, the deep-
est turning ray in the second layer. For o0 = 0.4, 0.1, 0.03
and 0.01, the number of points defining this ray was 13,
33, 94 and 267, respectively.

The second test done with the model shown in Figure
4a was a comparison of the CPU time required for the
new routine with that of Spence et al. (1984). Table 1
summarizes the results of eleven runs. For all runs of the
new routine, o. was equal to 0.1. For the first five runs
listed in Table 1, the take-off angles for the new routine
were supplied manually. For the last six runs the take-off
angles for the new routine were determined through the
search mode with the maximum number of rays traced to
define each take-off angle equal to 10, 25 or 50. The total
additional number of rays traced in each case was 55, 77
and 102, respectively. For all runs, the take-off angles for
the Spence et al. routine were supplied manually.

Description CPU Time CPU Time
of Run# (Spence et al.) (s) (This Paper) (s)
1 0.70 0.65
1.2 1.24 0.74
1,3 1.07 0.81
1,2,3 1.50 0.94
1,2,3,4 6.08 2.04
1,35 1.07 0.97 .02 .08
1,2,3,5 1.50 1.05 1.10 1.14

Table 1. CPU-time comparison for model and rays traced as
shown in Figure 4 on 12-MIPS Amdahl 5860 computer.

1 — calculate raypaths and traveltimes; 2 — calculate ampli-
tudes; 3 — generate plot of rays and traveltime curves; 4 — cal-
culate synthetic section and generate plot; 5 — search mode for
new routine with maximum number of rays traced to define each
take-off angle equal to 10, 25 and 50.

Table | shows that the new routine required less CPU
time for all runs except one in which the search mode was
used and amplitudes not calculated. There are three rea-
sons for the new routine’s favourable comparison. First,
the new routine operates in single precision whereas the
Spence et al. routine requires double precision because of
the way in which traveltimes and the in-plane geometrical
spreading are calculated. Second, the manner in which
the next block is determined when a ray intersects a
model boundary is generally more efficient in the case of
the new routine due to its layered, grid-like, model
parameterization. Finally, to calculate the in-plane
spreading, the routine of Spence et al. traces a second ray
for every ray traced in order to estimate the derivative in

equation (8). The effect of this additional ray tracing is
evident in the CPU times for the runs in which ampli-
tudes are calculated. The relative efficiency of the new
routine for the run in which the synthetic section was
generated is due in part to the incorporation of a
time/cost-saving feature in which zero-amplitude portions
of traces are plotted as two points at either end connected
by a straight line.

Even with the additional ray tracing in the search
mode, the new routine generally required less CPU time.
With the maximum number of rays traced to define each
take-off angle equal to 10, the routine was able to define
adequately the take-off angles of each of the correspond-
ing ray families. Setting this maximum to 25 and 50
resulted in additional refining of the take-off angles.

Crustal refraction example

The second example is an application of the routine to
the modelling of an observed crustal refraction data set.
The complete data set consists of four reversed lines each
approximately 300 km long from the Peace River Arch
region (Ellis et al., 1986). Figure 6a shows the final block
velocity model for a single line of the experiment in
which profiles from shots at 0 and 270 km model dis-
tances were interpreted through a comparison of observed
and theoretical traveltimes and amplitudes (Zelt and Ellis,
1988). Figure 6b is a smoothed isovelocity contour repre-
sentation of the model and shows more clearly that the
model possesses significant lateral variations. The model
consists of 9 layers — 2 sedimentary, 5 crustal and 2
upper-mantle — and 51 blocks.

Figure 7a shows the complete set of all rays traced
through the model from the shot point at 270 km. A total
of fourteen ray families consisting of 150 rays were
traced. An additional 252 rays were traced in the search
mode. The ray families include turning rays in each layer
and reflections off the four intracrustal boundaries, the
crust-mantle boundary, and an upper mantle boundary at
a depth of about 56 km. The corresponding traveltime
curves are shown in Figure 7b compared with the
observed traveltime picks. The synthetic record section is
shown in Figure 7c. With a value of o = 0.1, the total
CPU time required to calculate and plot all rays, travel-
time curves, and the synthetic section was 4.26 s. The
corresponding observed record section is shown in Figure
7d. The agreement between the synthetic and observed
data is generally good; however, the relatively high
amplitudes of the intracrustal reflected phases have not
been reproduced by the model. Strong reflections of this
type have been explained (e.g., Fuchs, 1969; Valasek et
al., 1987; Christensen and Szymanski, 1988) as a result of
constructive interference associated with a layered transi-
tion zone due to variations in composition, texture and
anisotropy or other physical properties. A zone of this
type cannot be modelled using ray theory.

A brief description of the general modelling procedure
used to arrive at the final model shown in Figure 6 is
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Fig. 6. Velocity model interpreted for a real, reversed, crustal refraction data set — PRASE, Line C (Ellis et al., 1986). (a) Block model
representation in which the upper and lower velocity in km/s is indicated within each trapezoid. The surface velocity in the first sedimentary
layer varies from 4.25 to 1.75 km/s from left to right and the lower velocity in the second sedimentary layer varies from 6.0 to 4.0 km/s from
left to right. (b) A smoothed, isovelocity contour representation of the velocity model. The velocities of contours are indicated in km/s.

instructional. First, eight sonic logs from wells close to
the line were analyzed to obtain a two-layer sediment-
velocity model. The subbasement crustal and upper man-
tle starting velocity model was obtained by connecting
together the two best-fitting laterally homogeneous mod-
els which satisfied the traveltimes of the profiles from

either shot. Through a trial-and-error scheme, this model
was adjusted to match the traveltimes of arrivals for both
shots from progressively deeper layers within the crust
and upper mantle. Finally, a comparison of the initial syn-
thetic section obtained from the best-fit traveltime model
with the observed section showed that a few minor
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Fig. 7. Application of the new routine to the interpretation of a real crustal refraction data set — PRASE, Line C — Shot C2 (Ellis et al.,
1986). (a) Rays traced through velocity model. (b) Comparison of the observed traveltime picks (symbols) and the calculated traveltime
curves (lines). (c) Synthetic section corresponding to the rays traced in (a). The source wavelet is a low-passed Ricker wavelet. (d)
Observed record section bandpass filtered from 2 to 12 Hz with calculated traveltime curves superimposed. The traces in (c) and (d) have

been scaled by a factor proportional to distance.

adjustments were necessary to fit the amplitudes satisfac-
torily. The velocity gradients of some layers were adjust-
ed to better match turning-ray amplitudes; and velocity
contrasts across layer boundaries were adjusted to
improve reflected ray amplitudes. This single sequence of
steps resulted in the model presented in Figure 6. For a
more complicated or strongly two-dimensional model, or
for further refinement of a model, some or all of the
above modelling steps may be repeated several times.

Complex crustal model

For the third example, a generalized crustal model of
an oceanic-continental subduction zone is presented
(Figure 8a). This model is a simplified version of that
developed by Spence et al. (1985) of the subduction zone
of western Canada. The purpose of this example is to
illustrate the degree of lateral inhomogeneity possible
with the model parameterization of the new routine. The
layer pinch-out feature discussed earlier has allowed the
obliquely dipping oceanic plate to be incorporated into
the model. Five continental layers on the right side of the
model have been pinched out above the subducting plate
and four oceanic layers on the left side of the model have
been pinched out at the bottom right of the model. Figure
8b shows turning and reflected rays traced through the

subducting oceanic upper mantle and the corresponding
synthetic section is shown in Figure 8c.

Exploration statics problem

The final example is an application of the routine to the
study of the effects of near-surface velocity anomalies on
CMP data, i.e., the statics problem. The routine was mod-
ified so that a collection of CMP gathers could be
obtained in a single run. The model is presented in Figure
9a and consists of a horizontal reflector underlying a low-
velocity layer of varying thickness. A common-shot gath-
er and CMP gather for the same point in the model are
shown in Figures 9b and 9c¢, respectively. The CMP gath-
er after NMO correction is presented in Figure 9d. The
misalignment of arrivals in Figure 9d is due primarily to
the lateral variations in thickness of the upper layer, but is
also due to the increase in velocity with depth within the
model.

DISCUSSION

This routine offers greater practicality than existing
forward-modelling ray-tracing algorithms. In addition,
the efficiency and range of model types which can be
considered is comparable to current, widely used rou-
tines. Fundamental to the new routine is its simple, lay-
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Fig. 9. Application of the routine to the study of the effects of near-surface velocity anomalies on CMP data. (a) Reflected rays in second
layer traced through model. Upper and lower velocities in km/s are indicated within each layer. Vertical block boundaries are not shown.
(b) Common-shot gather at 3 km model distance for turning and reflected rays traced through first two layers of model in (a). Each trace is
scaled to a common maximum amplitude. (¢) CMP gather at 3 km model distance. Only the reflected phase from second layer is included.
(d) CMP gather in (c) after NMO correction using the rms velocity to the second layer reflector (2.38 km/s). Distance in (c) and (d) is half
offset and the correct relative amplitude of each trace is presented.

ered, large-block velocity model parameterization. The
layered nature of the model is valuable in that it allows
the user to select specific layers within which, or layer
boundaries at which, turning, reflection and conversion
are to occur. The large-block parameterization is vital for
efficiency since the velocity and its derivatives necessary
for the solution of the ray-tracing equations are simple
analytic functions of position and the number of model
boundaries crossed by each ray is minimized. Another
important advantage of large blocks is that the number of
zero- and first-order discontinuities in velocity within the
model can be minimized. This reduces the difficulties
which can arise in the application of the ray method to
blocky models, in particular, with regard to amplitude cal-
culations [Cormier and Spudich, 1984, equations (4.1) to
(4.3)]. The parameterization requires only a single upper
and lower velocity to define the velocity field within each
trapezoid and layer boundaries are a series of straight-line

segments. This allows the user to alter the model easily
and quickly so that the new velocity structure is always
well-defined and predictable.

A number of relatively simple features incorporated
into the algorithm, and which are often necessary in
refraction interpretation, give the routine flexibility and a
wide range of applicability. These features include layer
pinch-outs, S-wave propagation and converted phases,
multiple and surface reflections, approximate attenuation,
head waves, no restriction on source location, multiple
sources in a single run, and a reverse ray-direction ampli-
tude calculation. The latter capability is necessary for the
interpretation of marine data in which common-receiver
profiles are involved.

As a practical algorithm for forward-modelling inter-
pretation of crustal refraction data, the only significant
limitation of the routine is that of the ray method itself. In
particular, a blocky velocity structure can introduce false



30 C.A. ZELT AND R.M. ELLIS

highs and lows into amplitude calculations with respect to
finite-frequency wave propagation due to discontinuities
in velocity gradients at model boundaries. This problem
is in addition to the fundamental inapplicability of the ray
method in regions about caustics, critical points and geo-
metrical shadows. The incorporation of Gaussian-beam
amplitudes into the routine would be a straightforward
procedure and would remove the above-mentioned diffi-
culties associated with the dynamic properties of ray the-
ory. However, this modification does not appear to be
necessary or practical at this point, given the general
quality of most refraction data sets and the somewhat
unpredictable nature of Gaussian-beam seismograms
(Miiller, 1984; Cerveny, 1985). To reduce some of the
artificial highs and lows associated with ray amplitudes,
allowance within the routine is made for a specified
amount of smoothing of the amplitude curves for each ray
family. In addition, layer boundaries may also be
smoothed so that the angle of incidence and reflection or
transmission is calculated assuming the local slope of the
smooth boundary. This simulation of smooth boundaries
is simple and efficient to apply and can be important for
raypaths which cross layer boundaries near a point at
which the boundary consists of two line segments of dif-
fering slope.

The routine was developed for use in the interpretation
of crustal refraction data; however, a number of other
applications are possible — for instance, the CMP exam-
ple presented earlier. The routine would also be suitable
as a fast forward-modelling algorithm for iterative migra-
tion/inversion of reflection data. The appropriate conver-
sion of coding would be straightforward to allow for the
routine’s implementation on a microcomputer, as was
done for the Spence et al. (1984) algorithm (Crossley,
1987).

A possible alternate model parameterization could be
implemented in which the velocity field within each
trapezoid is defined by velocity values specified at each
of the four corners of the block. This would allow the
velocity structure within a layer to be free of velocity dis-
continuities at vertical block boundaries and the parame-
terization would require only a single additional upper
and lower velocity pair to be specified for each layer. It
may be possible to improve the efficiency of the routine
by automatically breaking each trapezoid into two or
more triangular blocks within which the velocity gradient
is a constant (Chapman and Drummond, 1982; Miiller,
1984). However, this would at least double the number of
blocks within the model and result in each ray crossing
about twice as many model boundaries. This may reduce
the efficiency and degrade the amplitude calculations fur-
ther due to the increased number of discontinuities in
velocity gradient.
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