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Chapter 1

What Is Inverse Theory

This course is an introduction to some of the balkanized family of techniques and
philosophies that reside under the umbrella of inverse theory. In this section we present
the central threads that bind all of these singular items together in a harmonious whole.
That’s impossible of course, but what we will do is provide a point of view that, while it
will break from time-to-time, is good enough to proceed with. The goal of this chapter
is to introduce a real inverse problem and explore some of the issues that arise in a
non-technical way. Later, we explore the resulting complications in greater depth.

Suppose that we find ourselves on a gleaming white beach somewhere in the Caribbean
with

• time on our hands,

• a gravimeter (a little device that measures changes in gravitational acceleration),
and

• the certain conviction that a golden blob of pirate booty lies somewhere beneath
us.

In pursuit of wealth we make a series of measurements of gravity at several points along
the surface. Our mental picture looks like Figure 1.1. And although we don’t know
where the gold actually is, or what amount is present, we’re pretty sure something is
there.

How can we use these observations to decide where the pirate gold lies and how much
is present? It’s not enough to know that gold (ρ = 19.3gm/cm3) is denser than sand
(ρ = 2.2gm/cm3) and that the observed gravity should be greater above our future
wealth. Suppose that we observe relative gravity values of (from left to right)

22, 34, 30, 24, and 55µ gals

1



2 What Is Inverse Theory

x 
x 

x 
x 

Sand 

Measurements 

Surface 

Figure 1.1: We think that gold is buried under the sand so we make measurements of
gravity at various locations on the surface.

respectively.a There’s no simple formula, (at least not that we know) into which we can
plug five observed gravity observations and receive in return the depth and size of our
target.

So what shall we do? One thing we do know is

φ(r) =
∫
Gρ(r′)

|r− r′|dV
′ (1.1)

that is, Newtonian gravitation. (If you didn’t know it before, you know it now.) Equa-
tion 1.1 relates the gravitational potential, φ, to density, ρ. Equation 1.1 has two
interesting properties:

• it expresses something we think is true about the physics of a continuum, and

• it can be turned into an algorithm which we can apply to a given density field

So although we don’t know how to turn our gravity measurements into direct infor-
mation about the density in the earth beneath us, we do know how to go in the other
direction: given the density in the earth beneath us, we know how to predict the gravity
field we should observe. Inverse theory begins here, as in Figure 1.2.

For openers, we might write a computer program that accepts densities as inputs and
produces predicted gravity values as outputs. Once we have such a tool we can play
with different density values to see what kind of gravity observations we would get. We
might assume that the gold is a rectangular block of the same dimensions as a standard

aA gal is a unit of acceleration equal to one centimeter per second per second. It is named after
Galileo but was first used in this century.

1
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density
gravity

observed

density
predicted

gravity

want:

have:

Figure 1.2: Inverse problems usually start with some procedure for predicting the re-
sponse of a physical system with known parameters. Then we ask: how can we deter-
mine the unknown parameters from observed data?

x x x x x

surface

sand

unknown

predictions

Figure 1.3: An idealized view of the beach. The surface is flat and the subsurface
consists of little blocks containing either sand or gold.

pirate’s chest and we could move the block to different locations, varying both depth
and horizontal location, to see if we can match our gravity observations.

Part of writing the gravity program is defining the types of density models we’re going
to use. We’ll use a simplified model of the beach that has a perfectly flat surface,
and has a subsurface that consists of a cluster of little rectangles of variable density
surrounded by sand with a constant density. We’ve chosen the cluster of little rectangles
to include all of the likely locations of the buried treasure. (Did we mention we have a
manuscript fragment which appears to be part of a pirate’s diary?) In order to model
having the buried treasure at a particular spot in the model we’ll set the density in
those rectangles to be equal to the density of gold and we’ll set the density in the rest
of the little rectangles to the density of sand. Here’s what the model looks like: The x’s
are the locations for which we’ll compute the gravitational field. Notice that the values
produced by our program are referred to as predictions, rather than observations.

Now we have to get down to business and use our program to figure out where the
treasure is located. Suppose we embed our gravity program into a larger program
which will

1



4 What Is Inverse Theory

• generate all possible models by trying all combinations of sand and gold densities
in our little rectangles, and

• compare the predicted gravity values to the observed gravity values and tell us
which models, if any, agreed well with the observations.

Model space and data space In the beach example a model consists of 45 pa-
rameters, namely the content (sand or gold) of each block. We could represent this
mathematically as a 45-tuple containing the densities of each block. For example,
(2.2, 2.2, 2.2, 19.3, 2, 2 . . .) is an example of a model. Moreover, since we’re only allow-
ing those densities to be that of gold and sand, we might as well consider the 45-tuple
as consisting of zeros and ones. Therefore all possible models of the subsurface are ele-
ments of the set of 45-tuples whose elements are 0 or 1. There are 245 such models. We
call this the model space for our problem. On the other hand, the data space consists
of all possible data predictions. For this example there are 5 gravity measurements,
so the data space consists of all possible 5-tuples whose elements vary continuously
between 0 and some upper limit; i.e., a subset of R5, the 5-dimensional Euclidean
space.

1.1 Too many models

The first problem is that there are forty-five little rectangles under our model beach
and so there are

245 ≈ 3× 1013 (1.2)

models to inspect. If we can evaluate a thousand models per second, it will still take
us about 1100 years to complete the search. It is almost always impossible to examine
more than the tiniest fraction of the possible answers (models) in any interesting inverse
calculation.

1.2 No unique answer

We have forty-five knobs to play with in our model (one for each little rectangle) and
only five observations to match. It is very likely that there will be more than one best-
fitting model. This likelihood increases to near certainty once we admit the possibility
of noise in the observations. There are almost always many possible answers to an
inverse problem which cannot be distinguished by the available observations.

1
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someone else
found it

it’s a little bigger
than we thought

relative
likelihood

0 1 2 3 4 5 6 7 8

number of gold rectangles in model

it’s all here

Figure 1.4: Our preconceptions as to the number of bricks buried in the sand. There
is a possibility that someone has already dug up the gold, in which case the number of
gold blocks is zero. But we thing it’s most likely that there are 6 gold blocks. Possibly
7, but definitely not 3, for example. Since this preconception represents information we
have independent of the gravity data, or prior to the measurements, it’s an example of
what is called a priori information.

1.3 Implausible models

On the basis of outside information (which we can’t reproduce here because we un-
fortunately left it back at the hotel), we think that the total treasure was about the
equivalent of six little rectangles worth of gold. We also think that it was buried in a
chest which is probably still intact (they really knew how to make pirate’s chests back
then). We can’t, however, be absolutely certain of either belief because storms could
have rearranged the beach or broken the chest and scattered the gold about. It’s also
possible that someone else has already found it. Based on this information we think
that some models are more likely to be correct than others. If we attach a relative like-
lihood to different number of gold rectangles, our prejudices might look like Figure 1.4.
You can imagine a single Olympic judge holding up a card as each model is displayed.

Similarly, since we think the chest is probably still intact we favor models which have all
of the gold rectangles in the two-by-three arrangement typical of pirate chests, and we
will regard models with the gold spread widely as less likely. Qualitatively, our thoughts
tend towards some specification of the relative likelihood of models, even before we’re
made any observations, as illustrated in Figure 1.5. This distinction is hard to capture
in a quasi-quantitative way.
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Figure 1.5: Pirate chests were well made. And gold, being rather heavy, is unlikely
to move around much. So we think it’s mostly likely that the gold bars are clustered
together. It’s not impossible that the bars have become dispersed, but it seems unlikely.

A priori information Information which is independent of the observations, such as
that models with the gold bars clustered are more likely than those in which the bars
are dispersed, is called a priori information. We will continually make the distinction
between a priori (or simply prior, meaning before) and a posteriori (or simply posterior,
meaning after) information. Posterior information is the result of the inferences we
make from data and the prior information.

What we’ve called plausibility really amounts to information about the subsurface that
is independent of the gravity observations. Here the information was historic and took
the form of prejudices about how likely certain model configurations were with respect
to one another. This information is independent of, and should be used in addition to,
the gravity observations we have.

1.4 Observations are noisy

Most observations are subject to noise and gravity observations are particularly delicate.
If we have two models that produce predicted values that lie within reasonable errors
of the observed values, we probably don’t want to put much emphasis on the possibility
that one of the models may fit slightly better than the other. Clearly learning what the
observations have to tell us requires that we take account of noise in the observations.

1
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Nature

(real beach)

real physics real gravity

observed gravity
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corrections

for reality corrected

observed

gravity

Figure 1.6: The path connecting nature and the corrected observations is long and
difficult.

1.5 The beach is not a model

A stickier issue is that the real beach is definitely not one of the possible models we
consider. The real beach

• is three-dimensional,

• has an irregular surface,

• has objects in addition to sand and gold within it (bones and rum bottles, for
example)

• has an ocean nearby, and is embedded in a planet that has lots of mass of its
own and which is subject to perceptible gravitational attraction by the Moon and
Sun,

• etc

Some of these effects, such as the beach’s irregular surface and the gravitational effects
due to things other than the beach (the ocean, earth, Moon, Sun), we might try to
eliminate by correcting the observations (it would probably be more accurate to call
it erroring the observations). We would change the values we are trying to fit and,
likely, increasing their error estimates. The observational process looks more or less
like Figure 1.6 The wonder of it is that it works at all.

1



8 What Is Inverse Theory

Other effects, such as the three-dimensionality of reality, we might handle by altering
the model to make each rectangle three-dimensional or by attaching modeling errors to
the predicted values.

1.6 Summary

Inverse theory is concerned with the problem of making inferences about physical sys-
tems from data (usually remotely sensed). Since nearly all data are subject to some
uncertainty, these inferences are usually statistical. Further, since one can only record
finitely many (noisy) data and since physical systems are usually modeled by continuum
equations, if there is a single model that fits the data there will be an infinity of them.
To make these inferences quantitative one must answer three fundamental questions.
How accurately are the data known? I.e., what does it mean to “fit” the data. How
accurately can we model the response of the system? In other words, have we included
all the physics in the model that contribute significantly to the data. Finally, what
is known about the system independent of the data? Because for any sufficiently fine
parameterization of a system there will be unreasonable models that fit the data too,
there must be a systematic procedure for rejecting these unreasonable models.

1.7 Beach Example

Here we show an example of the beach calculation. With the graphical user interface
shown in Figure 1.7 we can fiddle with the locations of the gold/sand rectangles and
visually try to match the “observed” data. For this particular calculation, the true
model has 6 buried gold bricks as shown in Figure 1.7. In Figure 1.8 we show but one
example of a model that predicts the data essentially as well. The difference between
the observed and predicted data is not exactly zero, but given the noise that would be
present in our measurements, it’s almost certainly good enough. So we see that two
fundamentally different models predict the data about equally well.
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Figure 1.7: The true distribution of gold bricks.
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10 What Is Inverse Theory

Figure 1.8: An unreasonable model that predicts the data.

1



Chapter 2

A Simple Inverse Problem that Isn’t

Now we’re going to take a look at another inverse problem: estimating the density of the
material in a body from information about the body’s weight and volume. Although
this sounds like a problem that is too simple to be of any interest to real inverters,
we are going to show you that it is prey to exactly the same theoretical problems as
an attempt to model the three-dimensional elastic structure of the earth from seismic
observations.

Here’s a piece of something (Figure 2.1): It’s green, moderately heavy, and it appears
to glow slightly (as indicated by the tastefully drawn rays in the figure). The chunk
is actually a piece of kryptonite, one of the few materials for which physical properties
are not available in handbooks. Our goal is to estimate the chunk’s density (which is
just the mass per unit volume). Density is just a scalar, such as 7.34, and we’ll use ρ
to denote various estimates of its value. Let’s use K to denote the chunk (so we don’t
have to say chunk again and again).

Figure 2.1: A chunk of kryptonite. Unfortunately, kryptonite’s properties do not appear
to be in the handbooks.
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12 A Simple Inverse Problem that Isn’t

V

K

fluid level

Figure 2.2: A pycnometer is a device that measures volumes via a calibrated beaker
partially filled with water.

m = (kd)/g
d

Figure 2.3: A scale may or may not measure mass directly. In this case, it actually
measures the force of gravity on the mass. This is then used to infer mass via Hooke’s
law.

2.1 A First Stab at ρ

In order to estimate the chunk’s density we need to learn its volume and its mass.

2.1.1 Measuring Volume

We measure volume with an instrument called a pycnometer. Our pycnometer consists
of a calibrated beaker partially filled with water. If we put K in the beaker, it sinks
(which tells us right away that K is denser than water). If the fluid level in the beaker
is high enough to completely cover K, and if we record the volume of fluid in the beaker
with and without K in it, then the difference in apparent fluid volume is equal to the
volume of K. Figure 2.2 shows a picture of everyman’s pycnometer. V denotes the
change in volume due to adding K to the beaker.

2.1.2 Measuring Mass

We seldom actually measure mass. What we usually measure is the force exerted on
an object by the local gravitational field, that is, we put it on a scale and record the
resultant force on the scale (Figure 2.3).

In this instance, we measure the force by measuring the compression of the spring hold-
ing K up. We then convert that to mass by knowing (1) the local value of the Earth’s
gravitational field, and (2) the (presumed linear) relation between spring extension and

1



2.2 The Pernicious Effects of Errors 13

force.

2.1.3 Computing ρ

Suppose that we have measured the mass and volume of K and we found:

Measured Volume and Weight
volume 100 cc
mass 520 gm

Since density (ρ), mass (m), and volume (v) are related by

ρ =
m

v
(2.1)

ρ =
520

100
= 5.2

gm

cm3
(2.2)

2.2 The Pernicious Effects of Errors

For many purposes, this story could end now. We have found an answer to our original
problem (measuring the density of K). We don’t know anything (yet) about the short-
comings of our answer, but we haven’t had to do much work to get this point. However,
we, being scientists, are perforce driven to consider this issue at a more fundamental
level.

2.2.1 Errors in Mass Measurement

For simplicity, let’s stipulate that the volume measurement is essentially error-free, and
let’s focus on errors in the measurement of mass. To estimate errors due to the scale,
we can take an object that we knowa and measure its mass a large number of times.
We then plot the distribution (relative frequency) of the measured masses when we had
a fixed standard mass. The results looks like Figure 2.4.

aAn object with known properties is a standard. Roughly speaking, an object functions as a
standard if the uncertainty in knowledge of the object’s properties is at least ten times smaller than
the uncertainty in the current measurement. Clearly, a given object can be a standard in some
circumstances and the object of investigation in others.

1
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when the correct value is 5.2

probability of measuring x

probability of measuring 5.2

x
5.2 5.4

probability of measuring 5.4

p(x)

Figure 2.4: Pay careful attention to the content of this figure: It tells us the distribution
of measurement outcomes for a particular true value.

Physics News Number 183 by Phillip F. Schewe Improved mass values for
nine elements and for the neutron have been published by an MIT research team,
opening possibilities for a truly fundamental definition of the kilogram as well as
the most precise direct test yet of Einstein’s equation E = mc2. The new mass
values, for elements such as hydrogen, deuterium, and oxygen-16, are 20-1000 times
more accurate than previous ones, with uncertainties in the range of 100 parts per
trillion. To determine the masses, the MIT team, led by David Pritchard, traps single
ions in electric and magnetic fields and obtains each ion’s mass-to-charge ratio by
measuring its cyclotron frequency, the rate at which it circles about in the magnetic
field. The trapped ions, in general, are charged molecules containing the atoms of
interest, and from their measurements the researchers can extract values for individual
atomic masses. One important atom in the MIT mass table is silicon-28. With the
new mass value and comparably accurate measurements of the density and the lattice
spacing of ultrapure Si-28, a new fundamental definition of the kilogram (replacing the
kilogram artifact in Paris) could be possible. The MIT team also plans to participate in
a test of E = mc2 by using its mass values of nitrogen-14, nitrogen-15, and a neutron.
When N-14 and a neutron combine, the resulting N- 15 atom is not as heavy as the
sum of its parts, because it converts some of its mass into energy by releasing gamma
rays. In an upcoming experiment in Grenoble, France there are plans to measure the
”E” side of the equation by making highly accurate measurements of these gamma
rays. (F. DeFilippo et al, Physical Review Letters, 12 September.)

1



2.3 What is an Answer? 15

2.3 What is an Answer?

Let’s consider how we can use this information to refine the results of our experiment.
Since we have an observation (namely 5.2) we’d like to know the probability that the
true density has a particular value, say 5.4.

This is going to be a little tricky, and it’s going to lead us into some unusual topics.
We need to proceed with caution, and for that we need to sort out some notation.

2.3.1 Conditional Probabilities

Let ρO be the value of density we compute after measuring the volume and mass of K;
we will refer to ρO as the observed density. Let ρT be the actual value of K’s density;
we will refer to ρT as the true density.b

Let PO|T (ρO, ρT ) denote the conditional probability that we would measure ρO if the
true density was ρT . The quantity plotted above is PO|T (ρO, 5.2), the probability that
we would observe ρO if the true density was 5.2.

A few observations

First, keep in mind that in general we don’t know what the true value of the density
is. But if we nonetheless made repeated measurements we would still be mapping
out PO|T , only this time it would be PO|T (ρO, ρT ). And secondly, you’ll notice in the
figure above that the true value of the density does not lie exactly at the peak of our
distribution of observations. This must be the result of some kind of systematic error
in the experiment. Perhaps the scale is biased; perhaps we’ve got a bad A/D converter;
perhaps there was a steady breeze blowing in the window of the lab that day.

A distinction is usually made between modeling or theoretical errors and random errors.
A good example of a modeling error, would be assuming that K were pure kryptonite,
when in fact it is an alloy of kryptonite and titanium. So in this case our theory is
slightly wrong. In fact, we normally think of random noise as being the small scale
fluctuations which occur when a measurement is repeated. Unfortunately this distinc-
tion is hard to maintain in practice. Few experiments are truly repeatable. So when
we try to repeat it, we’re actually introducing small changes into the assumptions; as
we repeatedly pick up K and put it back down on the scale, perhaps little bits fleck off,
or some perspiration from our hands sticks to the sample, or we disturb the balance of
the scale slightly by touching it. An even better example would be the positions of the
gravimeters in the buried treasure example. We need to know these to do the modeling.

bWe will later consider whether this definition must be made more precise, but for now we will
avoid the issue.
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16 A Simple Inverse Problem that Isn’t

But every time we pick up the gravimeter and put it back to repeat the observation,
we misposition it slightly. Do we regard these mispositionings as noise or do we regard
them as actual model parameters that we wish to infer? Do we regard the wind blowing
near the trees during our seismic experiment as noise, or could we actually infer the
speed of the wind from the seismic data? In fact, recent work in meterology has shown
how microseismic noise (caused by waves at sea) can be used to make inferences about
climate.

As far as we can tell, the distinction between random errors and theoretical errors is
somewhat arbitrary and up to us to decide on a case by case. What it boils down to
are: what features are we really interested in? Noise consists of those features of the
data we have no intest in explaining. For more details see the commentary: What is
Noise? [SS98].

2.3.2 What We’re Really (Really) After

What we want is PT |O(ρT , ρO), the probability that ρT has a particular value given
that we have the observed value ρO. Because PT |O and PO|T appear to be relations
between the same quantities, and because they look symmetric, it’s tempting to make
the connection

PT |O(ρT , ρO) = PO|T (ρO, ρT ) ?

but unfortunately it’s not true.

What is the correct expression for PT |O? More important, how can we think our way
through issues like this?

We’ll start with the last question. One fruitful way to think about these issues is in
terms of a simple, repeated experiment. Consider the quantity we already have: PO|T ,
which we plotted earlier. It’s easy to imagine the process of repeatedly weighing a mass
and recording the results. If we did this, we could directly construct tables of PO|T .

2.3.3 A (Short) Tale of Two Experiments

Now consider repeatedly estimating density. There are two ways we might think of this.
In one experiment we repeatedly estimate the density of a particular, given chunk of
kryptonite. In the second experiment we repeatedly draw a chunk of kryptonite from
some source and estimate its density.

These experiments appear to be quite different. The first experiment sounds just like
the measurements we (or someone) made to estimate errors in the scale, except in this
case we don’t know the object’s mass to begin with. The second experiment has an

1
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given a chunk:

1. estimate its density.

2. go to 1.

1. get a chunk.

2. estimate its density.

3. go to 1.

many chunksone chunk

Experiment 1 Experiment 2

Figure 2.5: Two apparently different experiments.

entirely new aspect: selecting a chunk from a pool or source of chunks.c

Now we’re going to do two things:

• We’re going to persuade you (we hope) that both experiments are in fact the
same, and they both involve acquiring (in principle) multiple chunks from some
source.

• We’re going to show you how to compute PT |O when the nature of the source of
chunks is known and its character understood. After that we’ll tackle (and never
fully resolve) the thorny but very interesting issue of dealing with sources that
are not well-understood.

2.3.4 The Experiments Are Identical

Repetition Doesn’t Affect Logical Structure

In the first experiment we accepted a particular K and measured its density repeatedly
by conducting repeated weighings. The number of times we weigh a given chunk affects
the precision of the measurement but it does not affect the logical structure of the
experiment. If we weigh each chunk (whether we use one chunk or many) one hundred
times and average the results, the mass estimate for each chunk will be more precise,
because we have reduced uncorrelated errors through averaging; we could achieve the

cThe Edmund Scientific catalog might be a good bet, although we didn’t find kryptonite in it.
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x
5.2 5.4

p(x)

probability of a true density of x

when the observed value is 5.2

probability of true density of 5.2

probability of true density of 5.4

Figure 2.6: PT |O, the probability that the true density is x given some observed value.

same effect by using a correspondingly better scale. This issue is experimentally signif-
icant but it is irrelevant to understanding the probabilistic structure of the experiment.
For simplicity, then, we will assume that in both experiments, a particular chunk is
measured only once.

Answer is Always a Distribution

In the (now slightly modified) first experiment, we are given a particular chunk, K, and
we make a single estimate of its mass, namely ρO. Since the scale is noisy, we have to
express our knowledge of ρT , the true density, as a distribution showing the probability
that the true density has some value given that the observed density has some other
value. Our first guess is that it might have the gaussianish form that we had for PO|T
inFigure 2.4. So Figure 2.6 shows the suggested form for PT |O constructed by cloning
the earlier figure.

A Priori Pops Up

This looks pretty good until we consider whether or not we know anything about the
density of kryptonite outside of the measurements we have made.

1
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Suppose ρT is Known

Suppose that we know that the density of kryptonite is exactly

ρT = 1.7π

In that case, we must have

PT |O(ρT , ρO) = δ(ρT − 1.7π)

(where δ(x) is the Dirac delta-function) no matter what the observed value ρO is.

We are not asserting that the observed densities are all equal to 1.7π: the observations
are still subject to measurement noise. We do claim that the observations must always
be consistent with the required value of ρT (or that some element of this theory is
wrong). This shows clearly that PT |O 6= PO|T since one is a delta function, while the
other must show the effects of experimental errors.

Suppose ρT is Constrained

Suppose that we don’t know the true density of K exactly, but we’re sure it lies within
some range of values:

P (ρT ) =

{
CK if 5.6 > ρT > 5.1
0 otherwise

where CK is a constant and P refers to the probability distribution of possible values
of the density. In that case, we’d expect PT |O must be zero for impossible values of
ρT but should have the same shape everywhere else since the density distribution of
chunks taken from the pool is flat for those values. (The distribution does have to be
renormalized, so that the probability of getting some value is one, but we can ignore
this for now.) So we’d expect something like Figure 2.7.

What Are We Supposed to Learn from All This?

We hope it’s clear from these examples that the final value of PT |O depends upon
both the errors in the measurement process and the distribution of possible true values
determined by the source from which we acquired our sample(s). This is clearly the case
for the second type of experiment (in which we draw multiple samples from a pool),
but we have just shown above that it is also true when we have but a single sample and
a single measurement. One of the reasons we afford so much attention to the simple
one-sample experiment is that in geophysics we typically have only one sample, namely
Earth.

What we’re supposed to learn from all this, then, is
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x =

0

5.65.4

5.65.4

Probability of a true density of x

when the observed value is 5.2

probability of a true density of 5.2

probability of a true density of 5.4

probability of a true density < 5.1 is zero
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Figure 2.7: A priori we know that the density of kryptonite cannot be less than 5.1 or
greater than 5.6. If we’re sure of this than we can reject any observed density outside
of this region.

Conclusion 1: The correct a posteriori conditional distribution of density, PT |O,
depends in part upon the a priori distribution of true densities.

Conclusion 2: This connection holds even if the experiment consists of a single
measurement on a single sample.

2.4 What does it mean to condition on the truth?

The kryptonite example hinges on a very subtle idea: when we make repeated mea-
surements of the density of the sample, we are mapping out the probability PO|T even
though we don’t know the true density. How can this be?

We have a state of knowledge about the kryptonite density that depends on measure-
ments and prior information. If we treat the prior information as a probability, then we
are considering a hypothetical range of kryptonite densities any one of which, according
to the prior probability, could be the true value. So the variability in our knowledge
of the density is partly due to the range of possible a priori true density values, and
partly due to the experimental variation in the measurements. However, when we make
repeated measurements of a single chunk of kryptonite, we are not considering the uni-
verse of possible kryptonites, but just the one we are measuring. And so this repeated
measurement is in fact conditioned on the true value of the density even though we
don’t know it.
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Let us consider the simplest possible case, one observation, one parameter connected
by the forward problem:

d = m+ ε.

Assume that the prior distribution for m is N(0, β2) (the normal or Gaussian probability
with 0 mean and variance β2). Assume that the experimental error ε is N(0, σ2). If
we make repeated measurement of d on the same physical system (fixed m), then the
measurements will be centered about m (assuming no systematic errors) with variance
just due to the experimental errors, σ2. So we conclude that the probability (which we
will call f) of d given m is

f(d|m) = N(m, σ2). (2.3)

The definition of conditional probability is that

f(d,m) = f(d|m)f(m) (2.4)

where f(d,m) is the joint probability for model and data and f(m) is the probability
on models independent of data; that’s our prior probability. So in this case the joint
distribution f(m, d) is

f(d,m) = N(m, σ2)×N(0, β2) ∝ exp
[
− 1

2σ2
(d−m)2

]
× exp

[
− 1

2β2
m2

]
. (2.5)

So, if measuring the density repeatedly maps out f(d|m), then what is f(d)? We can
get f(d) formally by just integrating f(d,m) over all m:

f(d) ≡
∫
f(d,m)dm =

∫ ∞

−∞
exp

[
− 1

2σ2
(d−m)2

]
× exp

[
− 1

2β2
m2

]
dm.

This is the definition of a marginal probability. But now you can see that the variations
in f(d) depend on the a priori variations in m—we’re integrating over the universe of
possible m values. This is definitely not what we do when we make a measurement.

2.4.1 Another example

Here is a more complicated example of the same idea, which we extend to the solution
of a toy “inverse” problem. It involves using n measurements and a normal prior to
estimate a normal mean.

Assume that there are n observations d = (d1, d2, ...dn) which are iidd N(a, σ2) and
that we want to estimate the mean a given that the prior on a f(a) is N(µ, β2). Up to
a constant factor, the joint distribution for a and d is:

dThe term iid is used to denote independent, identically distributed random variables. This means
that the random variables are statistically independent of one another and they all have the same
probability law.
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f(d, m) = exp

[
− 1

2σ2

n∑

i=1

(di −m)2

]
exp

[
− 1

2β2
(m− µ)2

]
, (2.6)

As we saw above, the first term on the right is the probability f(d|m)

Now the following result, known as Bayes theorem, is treated in detail later in book,
but it is easy to derive from the definition of conditional probability, so we’ll give it
here too. In a joint probability distribution (i.e., a probability involving more than one
random variable), the order of the random variables doesn’t matter, so f(d, m) is the
same as f(m,d). Using the definition of conditional probability twice we have

f(d, m) = f(d|m)f(m)

and
f(m,d) = f(m|d)f(d).

So, since f(d, m) = f(m,d), it is clear that

f(d|m)f(m) = f(m|d)f(d)

from which it follows that

f(m|d) =
f(d|m)f(m)

f(d)
. Bayes Theorem (2.7)

The term f(m|d) is traditionally called the posterior (or a posteriori) probability since
it is conditioned on the data. Later we will see another interpretation of Bayesian
inversion in which f(m|d) is not the posterior. But for now we’ll assume that’s what
we’re after, as in the kryptonite study where we called it PT |O.

We have everything we need to evaluate f(m|d) except the marginal f(d). So here are
the steps in the calculation:

• compute f(d) by integrating the joint distribution f(d, m) with respect to m.

• form f(m|d) = f(d|m)f(m)
f(d)

.

• from f(m|d) compute a “best” estimated value of m by computing the mean of
f(m|d). We will discuss later why the posterior mean is what you want to have.

If you do this correctly you should get the following for the posterior mean:

nd̄/σ2 + µ/β2

n/σ2 + 1/β2
, (2.8)

where d̄ is the mean of the data. By a similar calculation the posterior variance is

1

n/σ2 + 1/β2
. (2.9)

1
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Notice that the posterior variance is always reduced by the presence of a nonzero β.
The posterior mean can also be written as

[
n/σ2

n/σ2 + 1/β2

]
d̄ +

[
1/β2

n/σ2 + 1/β2

]
µ.

Later we will see that the posterior mean has a special significance in that it minimizes
a certain average error (called the risk). Because of this, the posterior mean has its own
name: it is called the Bayes estimator. In this example the Bayes estimator is a weighted
average of the mean of the data and the mean of the Bayesian prior distribution; the
latter is the Bayes estimator before any data have been recorded.

Note also that as β → 0, increasingly strong prior information, the estimate converges
to the prior mean. As β →∞, increasingly weak prior information, the Bayes estimate
converges to the mean of the data.
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Chapter 3

Example: A Vertical Seismic Profile

Here we will look at another simple example of a geophysical inverse calculation. We
will cover the technical issues in due course. The goal here is simply to illustrate the
fundamental role of data uncertainties in any inverse calculation. In this example we
will see that a certain model feature is near the limit of the resolution of the data.
Depending on whether we are bold or conservative in assessing the errors of our data,
this feature will or will not be required to fit the data.

We use a vertical seismic profile (VSP–used in exploration seismology to image the
Earth’s near surface) experiment to illustrate how a fitted response depends on the
assumed noise level in the data. Figure 3.1 shows the geometry of a VSP. A source
of acoustic energy is at the surface near a vertical bore-hole (left side). A receiver is
lowered into a bore-hole, recording the travel time of the down-going acoustic pulse.
These times are used to construct a “best-fitting” model of the wavespeed as a function
of depth v(z).

Of course the real velocity is a function of x, y, and z, but since in this example the rays
propagate almost vertically, there will be no point in trying ot resolve lateral variations
in v. If the Earth is not laterally invariant, this assumption introduces a systematic
error into the calculation.

For each observation (and hence each ray) the problem of data prediction boils down
to computing the following integral:

t =
∫

ray

1

v(z)
d`. (3.1)

We can simplify the analysis somewhat by introducing the reciprocal velocity (called
slowness): s = 1/v. Now the travel time integral is linear in slowness:

t =
∫

ray
s(z)d`. (3.2)

If the velocity model v(z) (or slowness s(z)) and the ray paths are known, then the

1
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Figure 3.1: Simple model of a vertical seismic profile (VSP). An acoustic source is at
the surface of the Earth near a vertical bore-hole (left side). A receiver is lowered
into the bore-hole, recording the pulses of down-going sound at various depths below
the surface. From these recorded pulses (right) we can extract the travel time of the
first-arriving energy. These travel times are used to construct a best-fitting model of
the subsurface wavespeed (velocity). Here vi refers to the velocity in discrete layers,
assumed to be constant. How we discretize a continuous velocity function into a finite
numer of discrete values is tricky. But for now we will ignore this issue and just assume
that it can be done.
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Figure 3.2: Noise is just that portion of the data we have no interest in explaining. The
x’s indicate hypothetical measurements. If the measurements are very noisy, then a
model whose response is a straight line might fit the data (curve 1). The more precisely
the data are known, the more structure is required to fit them.

travel time can be computed by integrating the velocity along the ray path.

The goal is to somehow estimate v(z) (or some function of v(z), such as the average
velocity in a region), or to estimate ranges of plausible values of v(z). How well a
particular v(z) model fits the data depends on how accurately the data are known.
Roughly speaking, if the data are known very precisely we will have to work hard to
come up with a model that fits them to a reasonable degree. If the data are known
only imprecisely, then we can fit them more easily. For example, in the extreme case of
only noise, the mean of the noise fits the data.

separating signal from noise Consider the hypothetical measurements labeled with
x’s in Figure 3.2. Suppose that we construct three different models whose predicted
data are labeled 1, 2 and 3 in the figure. If we consider the uncertainty of the measure-
ments to be large, we might might argue that a straight line fits the data (curve 1).
If the uncertainties are smaller, them perhaps structure on the order of that shown in
the quadratic curve is required (curve 2). If the data are even more precisely known,
then more structure (such as shown in curve 3) is required. Unless we know the noise
level in the data, to perform a quantitative inverse calculation we have to decide in
advance which features we want to try to explain and which we do not.

Just as in the gravity problem we ignored all sorts of complicating factors, such as the
effects of tides. Here we will ignore the fact that unless v is constant, the rays will
bend (refract); this means that the domain of integration in the travel time formula
(equation 3.2) depends on the velocity, which we don’t know. We will neglect this issue

1



28 Example: A Vertical Seismic Profile

for now by simply asserting that the rays are straight lines. This would be a reasonable
approximation for x-ray, but likely not for sound.

an example

As a simple synthetic example we constructed a piecewise constant v(z) using 40 un-
known layers. We computed 78 synthetic travel times and contaminated them with
Gaussian noise. (The numbers 40 and 78 have no significance whatsoever; they’re just
pulled from a hat.) The level of the noise doesn’t matter for the present purposes; the
point is that given an unknown level of noise in the data, different assumptions about
this noise will lead to different kinds of reconstructions. With the constant velocity
layers, the system of forward problems for all 78 rays (Equation 3.2) reduces to

t = J · s (3.3)

where s is the 40-dimensional vector of layer slownesses and J is a matrix whose (i, j)
entry is the distance the i-th ray travels in the j-th layer. The details are given Bording
et al. [BGL+87] or later in Chapter 8. For now, the main point is that Equation 3.3 is
simply a numerical approximation of the continuous Equation 3.2. The data mapping,
the function that maps models into data, is the inner product of the matrix J and the
slowness vector s. The vector s, is another example of a model vector. It results from
discretizing a function (slowness as a function of space). The first element of s, s1, is
the slowness in the first layer, s2 is the slowness in the second layer, and so on.

Let toi be the i−th observed travel time (which we get by examinging the raw data
shown in Figure 3.1. Let tci(s) be the i-th travel time calculated through an arbitrary
slowness model s (by computing J for the given geometry and taking the dot product in
Equation 3.3. Finally, let σi is the uncertainty (standard deviation) of the i-th datum.

If the true slowness is st, then the following model of the observed travel times is
assumed to hold:

toi = tci(st) + εi, (3.4)

where εi is a noise term (whose standard deviation is σi). For this example, our goal
is to estimate st. A standard approach to solve this problem is to determine slowness
vectors s that make a misfit function such as

χ2(s) =
1

N

N∑

i=1

(
tci(s)− toi

σi

)2

, (3.5)

smaller than some tolerance. Here N is the number of observations. The symbol χ2

is often used to denote this sum because the sum of uncorrelated Gaussian random
variables has a distribution known as χ2 by statisticians. Any statistics will have the
details, for example the informative and highly entertaining [GS94]. We will come back
to this idea later in the course.

1
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We have assumed that the number of layers is known, 40 in this example, but this is
usually not the case. Choosing too many layers may lead to an over-fitting of the data.
In other words we may end up fitting noise induced structures. Using an insufficient
number of layers will not capture important features in the data. There are tricks and
methods to try to avoid over- and under-fitting. In the present example we do not
have to worry since we will be using simulated data. To determine the slowness values
through (3.5) we have used a truncated SVDa

reconstruction, throwing away all the eigenvectors in the generalized inverse approxi-
mation of s that are not required to fit the data at the χ2 = 1 level. Fitting the data
this level means that, on average, all the predicted data agree with the measurements
to within one σ. The resulting model is not unique, but it is representative of models
that do not over-fit the data (to the assumed noise level).

3.0.2 Travel time fitting

We will consider the problem of fitting the data under two different assumptions about
the noise. Figure 3.3 shows the observed and predicted data for models that fit the
travel times on average to within 0.3 ms and 1.0 ms. Remember, the actual pseudo-
random noise in the data is fixed throughout, all we are changing is our assumption
about the noise, which is reflected in the data misfit criterion.

We refer to these as the optimistic (low noise) and pessimistic (high noise) scenarios.
You can clearly see that the smaller the assumed noise level in the data, the more the
predicted data must follow the pattern of the observed data. It takes a complicated
model to predict complicated data! Therefore, we should expect the best fitting model
that produced the low noise response to be more complicated than the model that
produced the high noise response. If the error bars are large, then a simple model will
explain the data.

Now let us look at the models that actually fit the data to these different noise levels;
these are shown in Figure 3.4. It is clear that if the data uncertainty is only 0.3 ms,
then the model predicts (or requires) a low velocity zone. However, if the data errors
are as much as 1 ms, then a very smooth response is enough to fit the data, in which
case a low velocity zone is not required. In fact, for the high noise case essentially a
linear v(z) increase will fit the data, while for the low noise case a rather complicated
model is required. (In both cases, because of the singularity of J , the variances of the
estimated parameters become very large near the bottom of the borehole.)

Hopefully this example illustrates the importance of understanding the noise distribu-

aWe will study the singular value decomposition (SVD) in great detail later. For now just consider
it to be something like a Fourier decomposition of a matrix. From it we can get an approximate inverse
of the matrix, which we use to solve Equation3.3. Truncating the SVD is somewhat akin to low-pass
filtering a time series in the frequency domain. The more you truncate the simpler the signal.
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Figure 3.3: Observed data (solid curve) and predicted data for two different assumed
levels of noise. In the optimistic case (dashed curve) we assume the data are accurate
to 0.3 ms. In the more pessimistic case (dotted curve), we assume the data are accurate
to only 1.0 ms. In both cases the predicted travel times are computed for a model that
just fits the data. In other words we perturb the model until the RMS misfit between
the observed and predicted data is about N times 0.3 or 1.0, where N is the number
of observations. Here N = 78. I.e., Nχ2 = 78 × 1.0 for the pessimistic case, and
Nχ2 = 78× .3 for the optimistic case.

tion to properly interpret inversion estimates. In this particular case, we didn’t simply
pull these standard deviations out of hat. The low value (0.3 ms) is what you happen
to get if you assume that the only uncertainties in the data are normally distributed
fluctuations about the running mean of the travel times. However, keep in mind that
nature doesn’t really know about travel times. Travel times are approximations to the
true properties (i.e., finite bandwidth) of waveforms. Further, the travel times them-
selves are usually assigned by a human interpreter looking at the waveforms. Based
on these considerations, one might be led to conclude that a more reasonable estimate
of the uncertainties for real data would be closer to 1 ms than 0.3 ms. In any event,
the interpretation of the presence of a low velocity zone should be viewed with some
scepticism unless the smaller uncertainty level can be justified.
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Figure 3.4: The true model (solid curve) and the models obtained by a truncated SVD
expansion for the two levels of noise, optimistic (0.3 ms, dashed curve) and pessimistic
(1.0 ms, dotted curve). Both of these models just fit the data in the sense that we
eliminate as many singular vectors as possible and still fit the data to within 1 standard
deviation (normalized χ2 = 1). An upper bound of 4 has also been imposed on the
velocity. The data fit is calculated for the constrained model.
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Chapter 4

A Little Linear Algebra

Linear algebra background The parts of this chapter dealing with linear algebra
follow the outstanding book by Strang [Str88] closely. If this summary is too con-
densed, you would be well advised to spend some time working your way through
Strang’s book. One difference to note however is that Strang’s matrices are m × n,
whereas ours are n ×m. This is not a big deal, but it can be confusing. We’ll stick
with n×m because that is common in geophysics and later we will see that m is the
number of model parameters in an inverse calculation.

4.1 Linear Vector Spaces

The only kind of mathematical spaces we will deal with in this course are linear vector
spaces. You are already well familiar with concrete examples of such spaces, at least in
the geometrical setting of vectors in three-dimensional space. We can add any two, say,
force vectors and get another force vector. We can scale any such vector by a numerical
quantity and still have a legitimate vector. However, in this course we will use vectors
to encapsulate discrete information about models and data. If we record one seismic
trace, one second in length at a sample rate of 1000 samples per second, and let each
sample be defined by one byte, then we can put these 1000 bytes of information in a
1000-tuple

(s1, s2, s3, · · · , s1000) (4.1)

where si is the i-th sample, and treat it just as we would a 3-component physical vector.
That is, we can add any two such vectors together, scale them, and so on. When we
“stack” seismic traces, we’re just adding these n-dimensional vectors component by
component, say trace s plus trace t,

s+ t = (s1 + t1, s2 + t2, s3 + t3, · · · , s1000 + t1000). (4.2)
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34 A Little Linear Algebra

Now, the physical vectors have a life independent of the particular 3-tuple we use to
represent them. We will get a different 3-tuple depending on whether we use cartesian
or spherical coordinates, for example; but the force vector itself is independent of these
considerations. On the other hand, our use of vector spaces is purely abstract. There
is no physical seismogram vector; all we have is the n-tuple sampled from the recorded
seismic trace.

Further, the mathematical definition of a vector space is sufficiently general to incor-
porate objects that you might not consider as vectors at first glance–such as functions
and matrices. The definition of such a space actually requires two sets of objects: a set
of vectors V and a one of scalars F . For our purposes the scalars will always be either
the real numbers R or the complex numbers C. For this definition we need the idea of
a Cartesian product of two sets.

Definition 1 Cartesian product The Cartesian product A×B of two sets A and B
is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B.

Definition 2 Linear Vector Space A linear vector space over a set F of scalars
is a set of elements V together with a function called addition from V × V into V
and a function called scalar multiplication from F × V into V satisfying the following
conditions for all x, y, z ∈ V and all α, β ∈ F :

V1: (x + y) + z = x + (y + z)

V2: x + y = y + x

V3: There is an element 0 in V such that x + 0 = x for all x ∈ V .

V4: For each x ∈ V there is an element −x ∈ V such that x + (−x) = 0.

V5: α(x + y) = αx+ αy

V6: (α + β)x = αx + βx

V7: α(βx) = (αβ)x

V8: 1 · x = x

The simplest example of a vector space is Rn, whose vectors are n-tuples of real numbers.
Addition and scalar multiplication are defined component-wise:

(x1, x2, · · · , xn) + (y1, y2, · · · , yn) = (x1 + y1, x2 + y2, · · · , xn + yn) (4.3)

and
α(x1, x2, · · · , xn) = (αx1, αx2, · · · , αxn). (4.4)
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4.1 Linear Vector Spaces 35

In the case of n = 1 the vector space V and the scalars F are the same. So trivially, F
is a vector space over F .

A few observations: first, by adding −x to both sides of x + y = x, you can show that
x+ y = x if and only if y = 0. This implies the uniqueness of the zero element and also
that α · 0 = 0 for all scalars α.

Functions themselves can be vectors. Consider the space of functions mapping some
nonempty set onto the scalars, with addition and multiplication defined by:

[f + g](t) = f(t) + g(t) (4.5)

and

[αf ](t) = αf(t). (4.6)

We use the square brackets to separate the function from its arguments. In this case,
the zero element is the function whose value is zero everywhere. And the minus element
is inherited from the scalars: [−f ](t) = −f(t).

4.1.1 Matrices

The set of all n×m matrices with scalar entries is a linear vector space with addition
and scalar multiplication defined component-wise. We denote this space by Rn×m.
Two matrices have the same dimensions if they have the same number of rows and
columns. We use upper case roman letters to denote matrices, lower case romana to
denote ordinary vectors and greek letters to denote scalars. For example, let

A =




2 5
3 8
1 0


 . (4.7)

Then the components of A are denoted by Aij. The transpose of a matrix, denoted by
AT , is achieved by exchanging the columns and rows. In this example

AT =

[
2 3 1
5 8 0

]
. (4.8)

Thus A21 = 3 = AT12.

You can prove for yourself that

(AB)T = BTAT . (4.9)

aFor emphasis, and to avoid any possible confusion, we will henceforth also use bold type for
ordinary vectors.
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36 A Little Linear Algebra

A matrix which equals its transpose (AT = A) is said to be symmetric. If AT = −A
the matrix is said to be skew-symmetric. We can split any square matrix A into a sum
of a symmetric and a skew-symmetric part via

A =
1

2
(A + AT ) +

1

2
(A− AT ). (4.10)

The Hermitian transpose of a matrix is the complex conjugate of its transpose. Thus if

A =

[
4− i 8 12 + i
−12 −8 −4− i

]
(4.11)

then

ĀT ≡ AH =




4 + i −12
8 −8

12− i −4 + i


 . (4.12)

Sometimes it is useful to have a special notation for the columns of a matrix. So if

A =




2 5
3 8
1 0


 (4.13)

then we write
A =

[
a1 a2

]
(4.14)

where

a1 =




2
3
1


 . (4.15)

Addition of two matrices A and B only makes sense if they have the same number of
rows and columns, in which case we can add them component-wise

(A+B)ij = [Aij +Bij] . (4.16)

For example if

A =

[
1 2 3
−3 −2 −1

]
(4.17)

and

B =

[
0 6 2
1 1 1

]
(4.18)

Then

A+B =

[
1 8 5
−2 −1 0

]
. (4.19)

Scalar multiplication, once again, is done component-wise. If

A =

[
1 2 3
−3 −2 −1

]
(4.20)
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and α = 4 then

αA =

[
4 8 12
−12 −8 −4

]
. (4.21)

So both matrices and vectors can be thought of as vectors in the abstract sense. Matrices
can also be thought of as operators acting on vectors in Rn via the matrix-vector inner
(or “dot”) product. If A ∈ Rn×m and x ∈ Rm, then A · x = y ∈ Rn is defined by

yi =
m∑

j=1

Aijxj. (4.22)

This is an algebraic definition of the inner product. We can also think of it geometrically.
Namely, the inner product is a linear combination of the columns of the matrix. For
example,

A · x =



a11 a12

a21 a22

a31 a32


 ·
[
x1

x2

]
= x1



a11

a21

a31


+ x2



a12

a22

a32


 . (4.23)

A special case of this occurs when A is just an ordinary vector. We can think of this
as A ∈ Rn×m with n = 1. Then y ∈ R1 is just a scalar. A vector z in R1×m looks like

(z1, z2, z3, · · · , zm) (4.24)

so the inner product of two vectors z and x is just

[z1, z2, z3, · · · , zn] ·




x1

x2

x3
...
xn




= [z1x1 + z2x2 + z3x3 + · · ·+ znxn] . (4.25)

By default, a vector x is regarded as a column vector. So this vector-vector inner
product is also written as zTx or as (z,x). Similarly if A ∈ Rn×m and B ∈ Rm×p, then
the matrix-matrix AB product is defined to be a matrix in Rn×p with components

(AB)ij =
m∑

k=1

aikbkj. (4.26)

For example,

AB =

[
1 2
3 4

] [
0 1
2 3

]
=

[
4 7
8 15

]
. (4.27)

On the other hand, note well that

BA =

[
0 1
2 3

] [
1 2
3 4

]
=

[
3 4
11 16

]
6= AB. (4.28)
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This definition of matrix-matrix product even extends to the case in which both matrices
are vectors. If x ∈ Rm and y ∈ Rn, then xy (called the “outer” product and usually
written as xyT ) is

(xy)ij = xiyj. (4.29)

So if

x =

[
−1
1

]
(4.30)

and

y =




1
3
0


 (4.31)

then

xyT =

[
−1 −3 0
1 3 0

]
. (4.32)

4.1.2 Matrices With Special Structure

The identity element in the space of square n×n matrices is a matrix with ones on the
main diagonal and zeros everywhere else

In =




1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
...

. . .

0 . . . 0 0 1



. (4.33)

Even if the matrix is not square, there is still a main diagonal of elements given by Aii

where i runs from 1 to the smaller of the number of rows and columns. We can take
any vector in Rn and make a diagonal matrix out of it just by putting it on the main
diagonal and filling in the rest of the elements of the matrix with zeros. There is a
special notation for this:

diag(x1, x2, · · · , xn) =




x1 0 0 0 . . .
0 x2 0 0 . . .
0 0 x3 0 . . .
...

. . .

0 . . . 0 0 xn



. (4.34)

A matrix Q ∈ Rn×n is said to be orthogonal if QTQ = In. In this case, each column of
Q is an orthornormal vector: qi · qi = 1. So why are these matrices called orthogonal?
No good reason. As an example

Q =
1√
2

[
1 −1
1 1

]
. (4.35)

0



4.2 Matrix and Vector Norms 39

Now convince yourself that QTQ = In implies that QQT = In as well. In this case the
rows of Q must be orthonormal vectors too.

Another interpretation of the matrix-vector inner product is as a mapping from one
vector space to another. Suppose A ∈ Rn×m, then A maps vectors in Rm into vectors
in Rn. An orthogonal matrix has an especially nice geometrical interpretation. To see
this first notice that for any matrix A, the inner product (A · x) · y, which we write as
(Ax,y), is equal to (x, ATy), as you will verify in one of the exercises at the end of the
chapter. Similarly

(ATx,y) = (x, Ay). (4.36)

As a result, for an orthogonal matrix Q

(Qx, Qx) = (QTQx,x) = (x,x). (4.37)

Now, as you already know, and we will discuss shortly, the inner product of a vector
with itself is related to the length, or norm, of that vector. Therefore an orthogonal
matrix maps a vector into another vector of the same norm. In other words it does a
rotation.

4.2 Matrix and Vector Norms

We need some way of comparing the relative “size” of vectors and matrices. For scalars,
the obvious answer is the absolute value. The absolute value of a scalar has the property
that it is never negative and it is zero if and only if the scalar itself is zero. For vectors
and matrices both we can define a generalization of this concept of length called a
norm. A norm is a function from the space of vectors onto the scalars, denoted by ‖ · ‖
satisfying the following properties for any two vectors v and u and any scalar α:

Definition 3 Norms

N1: ‖v‖ > 0 for any v 6= 0 and ‖v‖ = 0⇔ v = 0

N2: ‖αv‖ = |α|‖v‖

N3: ‖v + u‖ ≤ ‖v‖+ ‖u‖

Here we use the symbol ⇔ to mean if and only if. Property N3 is called the triangle
inequality.

The most useful class of norms for vectors in Rn is the `p norm defined for p ≥ 1 by

‖x‖`p =

(
n∑

i=1

|xi|p
)1/p

. (4.38)
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For p = 2 this is just the ordinary euclidean norm: ‖x‖2 =
√

xTx. A finite limit of the
`p norm exists as p→∞ called the `∞ norm:

‖x‖`∞ = max
1≤i≤n

|xi| (4.39)

Any norm on vectors in Rn induces a norm on matrices via

‖A‖ = max
x6=0

‖Ax‖
‖x‖ . (4.40)

A matrix norm that is not induced by any vector norm is the Frobenius norm defined
for all A ∈ Rn×m as

‖A‖F =




m∑

i=1

n∑

j=1

A2
ij




1/2

. (4.41)

Some examples (see [GvL83]): ‖A‖1 = maxj ‖aj‖1 where aj is the j-th column of A.
Similarly ‖A‖∞ is the maximum 1-norm of the rows of A. For the euclidean norm
we have (‖A‖2)2 = maximum eigenvalue of ATA. The first two of these examples are
reasonably obvious. The third is far from so, but is the reason the `2 norm of a matrix
is called the spectral norm. We will prove this latter result shortly after we’ve reviewed
the properties of eigenvalues and eigenvectors.

Minor digression: breakdown of the `p norm

Since we have alluded in the previous footnote to some difficulty with the `p norm for
p < 1 it might be worth a brief digression on this point in order to emphasize that this
difficulty is not merely of academic interest. Rather, it has important consequences for
the algorithms that we will develop in the chapter on “robust estimation” methods. For
the rectangular (and invariably singular) linear systems we will need to solve in inverse
calculations, it is useful to pose the problem as one of optimization; to wit,

min
x
‖Ax− y‖. (4.42)

It can be shown that for the `p family of norms, if this optimization problem has a
solution, then it is unique: provided the matrix has full column rank and p > 1. (By
full column rank we mean that all the columns are linearly independent.) For p = 1
the norm loses, in the technical jargon, strict convexity. A proof of this result can be
found in [SG88]. It is easy to illustrate. Suppose we consider the one parameter linear
system: [

1
λ

]
x =

[
1
0

]
. (4.43)
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Figure 4.1: Family of `p norm solutions to the optimization problem for various values
of the parameter λ. In accordance with the uniqueness theorem, we can see that the
solutions are indeed unique for all values of p > 1, but that for p = 1 this breaks down
at the point λ = 1. For λ = 1 there is a cusp in the curve.

For simplicity, let us assume that λ ≥ 0 and let us solve the problem on the open
interval x ∈ (0, 1). The `p error function is just

Ep(x) ≡ [|x− 1|p + λp|x|p]1/p . (4.44)

Restricting x ∈ (0, 1) means that we don’t have to deal with the fact that the absolute
value function is not differentiable at the origin. Further, the overall exponent doesn’t
affect the critical points (points where the derivative vanishes) of Ep. So we find that
∂xEP (x) = 0 if and only if (

1− x
x

)p−1

= λp (4.45)

from which we deduce that the `p norm solution of the optimization problem is

x`p =
1

1 + λp/(p−1)
. (4.46)

But remember, λ is just a parameter. The theorem just alluded to guarantees that this
problem has a unique solution for any λ provided p > 1. A plot of these solutions as a
function of λ is given in Figure (4.1).

This family of solutions is obviously converging to a step function as p→ 1. And since
this function is not single-valued at λ = 1, you can see why the uniqueness theorem is
only valid for p > 1

Interpretation of the `p norms

When we are faced with optimization problems of the form

min
x
‖Ax− y‖`p (4.47)
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the question naturally arises: which p is best? There are two aspects of this question.
The first is purely numerical. It turns out that some of the `p norms have more stable
numerical properties than others.

In particular, as we will see, p values near 1 are more stable than p values near 2.
On the other hand, there is an important statistical aspect of this question. When we
are doing inverse calculations, the vector y is associated with our data. If our data
have, say, a Gaussian distribution, then `2 is optimal in a certain sense to be described
shortly. On the other hand, if our data have the double-exponential distribution, then
`1 is optimal. This optimality can be quantified in terms of the entropy or information
content of the distribution. For the Gaussian distribution we are used to thinking of
this in terms of the variance or standard deviation. More generally, we can define the
`p norm dispersion of a given probability density ρ(x) as

(σp)
p ≡

∫ ∞

−∞
|x− x0|pρ(x) dx (4.48)

where x0 is the center of the distribution. (The definition of the center need not
concern us here. The point is simply that the dispersion is a measure of how spread
out a probability distribution is.)

One can show (cf. [Tar87], Chapter 1) that for a fixed `p norm dispersion, the probability
density with the minimum information content is given by the generalized gaussian

ρp(x) =
p1−1/p

2σpΓ(1/p)
exp

(
−1

p

|x− x0|p
(σp)p

)
(4.49)

where Γ is the Gamma function [MF53]. These distributions are shown in Figure 4.2 for
four different values of p, 1, 2, 10, and ∞. The reason information content is so impor-
tant is that being naturally conservative, we want to avoid jumping to any unduly risky
conclusions about our data. One way to quantify simplicity is in terms of information
content, or entropy: given two (or more) models which fit the data to the same degree,
we may want to choose the one with the least information content in order to avoid
over-interpreting the data. This is an important caveat for all of inverse theory.b Later
in the course we will come back to what it means to be “conservative” and see that the
matter is more complicated than it might first appear.

4.3 Projecting Vectors Onto Other Vectors

Figure 4.3 illustrates the basic idea of projecting one vector onto another. We can
always represent one, say b, in terms of its components parallel and perpendicular to
the other. The length of the component of b along a is ‖b‖ cos θ which is also bTa/‖a‖

bThis is a caveat for all of life too. It is dignified with the title Occam’s razor after William of
Occam, an English philosopher of the early 14th century. What Occam actually wrote was: “Entia
non sunt multiplicanda praeter necessitatem” (things should not be presumed to exist, or multiplied,
beyond necessity).
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Figure 4.2: Shape of the generalized Gaussian distribution for several values of p.
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b
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a - b

b cos θ
θ

x

y

Figure 4.3: Let a and b be any two vectors. We can always represent one, say b, in
terms of its components parallel and perpendicular to the other. The length of the
component of b along a is ‖b‖ cos θ which is also bTa/‖a‖.

Now suppose we want to construct a vector in the direction of a but whose length is
the component of b along ‖b‖. We did this, in effect, when we computed the tangential
force of gravity on a simple pendulum. What we need to do is multiply ‖b‖ cos θ by a
unit vector in the a direction. Obviously a convenient unit vector in the a direction is
a/‖a‖, which equals

a√
aTa

.

So a vector in the a with length ‖b‖ cos θ is given by

‖b‖ cos θâ =
aTb

‖a‖
a

‖a‖ (4.50)

=
a

‖a‖
aTb

‖a‖ =
aaTb

aTa
=

aaT

aTa
b (4.51)

As an exercise verify that in general a(aTb) = (aaT )b. This is not completely obvious
since in one expression there is an inner product in the parenthesis and in the other
there is an outer product.

What we’ve managed to show is that the projection of the vector b into the direction
of a can be achieved with the following matrix (operator)

aaT

aTa
.

This is our first example of a projection operator.
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4.4 Linear Dependence and Independence

Suppose we have n vectors

{x1,x2, · · · ,xn} (4.52)

of the same dimension. The question is, under what circumstances can the linear
combination of these vectors be zero:

α1x1 + α2x2 + · · ·αnxn = 0. (4.53)

If this is true with at least one of the coefficients αi nonzero, then we could isolate
a particular vector on the right hand side, expressing it as a linear combination of
the other vectors. In this case the original set of n vectors are said to be linearly
dependent. On the other hand, if the only way for this sum of vectors to be zero is
for all the coefficients themselves to be zero, then we say that the vectors are linearly
independent.

Now, this linear combination of vectors can also be written as a matrix-vector inner
product. With a = (α1, α2, · · · , αn), and X = (x1,x2, · · · ,xn) we have the condition for
linear dependence being

Xa = 0 (4.54)

for some nonzero vector a, and the condition for linear independence being

Xa = 0⇒ a = 0. (4.55)

As a result, if we are faced with a linear system of equations to solve

Ax = b (4.56)

we can think in two different ways. On the one hand, we can investigate the equation
in terms of the existence of a vector x satisfying the equation. On the other hand, we
can think in terms of the compatibility of the right hand side with the columns of the
matrix.

Linear independence is also central to the notion of how big a vector space is–its di-
mension. It’s intuitively clear that no two linearly independent vectors are adequate
to represent an arbitrary vector in R3. For example, (1, 0, 0) and (0, 1, 0) are linearly
independent, but there are no scalar coefficients that will let us write (1, 1, 1) as a linear
combination of the first two. Conversely, since any vector in R3 can be written as a
combination of the three vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), it is impossible to have
more than three linearly independent vectors in R3.

The dimension of a space is the number of linearly independent vectors required to
represent an arbitrary element.
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46 A Little Linear Algebra

4.5 The Four Fundamental Spaces

Suppose you have an n−dimensional space and n linearly independent vectors in that
space. These vectors are said to be basis vectors since any element of the space can
be written as a linear combination of the basis vectors. For instance, two basis vectors
for R2 are (1, 0) and (0, 1). Any element of R2 can be written as some constant times
(1, 0) plus another constant times (0, 1). Any other pair of linearly independent vectors
would also work, such as (2, 0) and (1, 15).

OK, so take two basis vectors for R2 and consider all possible linear combinations of
them. This the set of all vectors

α(1, 0) + β(0, 1),

where α and β are arbitrary scalars. This is called the span of the two vectors and in
this case it obviously consists of all of R2. The span of (1, 0) is just the x-axis in R2.

On the other hand, if we consider these two vectors as being in R3, so that we write
them as (1, 0, 0) and (0, 1, 0), then their span clearly doesn’t fill up all of R3. It does,
however, fill up a subspace of R3, the x−y plane. The technical definition of a subspace
is that it is a subset closed under addition and scalar multiplication:

Definition 4 Subspaces: A subspace of a vector space is a nonempty subset S that
satisfies

S1: The sum of any two elements from S is in S, and

S2: The scalar multiple of any element from S is in S.

If we take a general matrix A ∈ Rn×m, then the span of the columns must be a
subspace of Rn. Whether this subspace amounts to the whole of Rn obviously depends
on whether the columns are linearly independent or not. This subspace is called the
column space of the matrix and is usually denoted by R(A), for “range”. The dimension
of the column space is called the rank of the matrix.

Another fundamental subspace associated with any matrix A is associated with the
solutions of the homogeneous equation Ax = 0. Why is this a subspace? Take any two
such solutions, say x and y and we have

A(x + y) = Ax + Ay = 0. (4.57)

Hence Similarly,
A(αx) = αAx. (4.58)

This subspace is called the nullspace or kernel and is extremely important from the
point of view of inverse theory. As we shall see, in an inverse calculation the right
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hand side of a matrix equations is usually associated with perturbations to the data.
Vectors in the nullspace have no effect on the data and are therefore unresolved in an
experiment. Figuring out what features of a model are unresolved is a major goal of
inversion.

4.5.1 Spaces associated with a linear system Ax = y

The span of the columns is a subset of Rn and the span of the rows is a subset of
Rm. In other words the rows of A have m components while the columns of A have n
components. Now the column space and the nullspace are generated by A. What about
the column space and the null space of AT ? These are, respectively, the row space and
the left nullspace of A. The nullspace and row space are subspaces of Rm, while the
column space and the left nullspace are subspaces of Rn.

Here is probably the most important result in linear algebra: For any matrix whatso-
ever, the number of linearly independent rows equals the number of linearly independent
columns. We summarize this by saying that row rank = column rank. For a generic
n×m matrix, this is not an obvious result. If you haven’t encountered this before, it
would be a good idea to review a good linear algebra book, such as [Str88]. We can
summarize these spaces as follows:

Theorem 1 Fundamental Theorem of Linear Algebra Let A ∈ Rn×m. Then

1: Dimension of column space equals r, the rank.

2: Dimension of nullspace equals m− r.

3: Dimension of row space equals r.

4: Dimension of left nullspace equals n− r.

A Geometrical Picture

Any vector in the null space of a matrix, must be orthogonal to all the rows (since each
component of the matrix dotted into the vector is zero). Therefore all the elements in
the null space are orthogonal to all the elements in the row space. In mathematical ter-
minology, the null space and the row space are orthogonal complements of one another.
Or, to say the same thing, they are orthogonal subspaces of Rm. Similarly, vectors in
the left null space of a matrix are orthogonal to all the columns of this matrix. This
means that the left null space of a matrix is the orthogonal complement of the column
space; they are orthogonal subspaces of Rn. In other words, orthogonal complement of
a subspace S consists of all the vectors x such that (x, y) = 0 for y ∈ S.
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4.6 Matrix Inverses

A left inverse of a matrix A ∈ Rn×m is defined to be a matrix B such that

BA = I. (4.59)

A right inverse C therefore must satisfy

AC = I. (4.60)

If there exists a left and a right inverse of A then they must be equal since matrix
multiplication is associative:

AC = I ⇒ B(AC) = B ⇒ (BA)C = B ⇒ C = B. (4.61)

Now if we have more equations than unknowns then the columns cannot possibly span
all of Rn. Certainly the rank r must be less than or equal to n, but it can only equal n
if we have at least as many unknowns as equations. The basic existence result is then
[Str88]:

R R R 
n  x m n  m 

= 

Theorem 2 Existence of solutions to Ax = y The
system Ax = y has at least one solution x for every y
(there might be infinitely many solutions) if and only if
the columns span Rn (r = n), in which case there exists
an m × n right inverse C such that AC = In. This is
only possible if n ≤ m.

Don’t be mislead by the picture above into neglecting the important special case when
m = n. The point is that the basic issues of existence and, next, uniqueness, depend
on whether there are more or fewer rows than equations. The statement of uniqueness
is [Str88]:

R R R 
n  x m n  m 

= 

Theorem 3 Uniqueness of solutions to Ax = y
There is at most one solution to Ax = y (there might
be none) if and only if the columns of A are linearly in-
dependent (r = m), in which case there exists an m× n
left inverse B such that BA = Im. This is only possible
if n ≥ m.

Clearly then, in order to have both existence and uniqueness, we must have that r =
m = n. This precludes having existence and uniqueness for rectangular matrices. For
square matrices m = n, so existence implies uniqueness and uniqueness implies
existence.

Using the left and right inverses we can find solutions to Ax = y: if they exist. For
example, given a right inverse A, then since AC = I, we have ACy = y. But since
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Ax = y it follows that x = Cy. But C is not necessarily unique. On the other hand,
if there exists a left inverse BA = I, then BAx = By, which implies that x = By.

Some examples. Consider first the case of more equations than unknowns n > m. Let

A =



−1 0
0 3
0 0


 (4.62)

Since the columns are linearly independent and there are more rows than columns,
there can be at most one solution. You can readily verify that any matrix of the form

[
−1 0 γ
0 1/3 ι

]
(4.63)

is a left inverse. The particular left inverse given by the formula (ATA)−1AT (cf. the
exercise at the end of this chapter) is the one for which γ and ι are zero. But there
are infinitely many other left inverses. As for solutions of Ax = y, if we take the inner
product of A with the vector (x1, x2)T we get



−x1

3x2

0


 =



y1

y2

y3


 (4.64)

So, clearly, we must have x1 = −y1 and x2 = 1/3y2. But, there will not be any solution
unless y3 = 0.

Next, let’s consider the case of more columns (unknowns) than rows (equations) n < m.
Let

A =

[
−1 0 0
0 3 0

]
(4.65)

Here you can readily verify that any matrix of the form


−1 0
0 1/3
γ ι


 (4.66)

is a right inverse. The particular right inverse (shown in the exercise at the end of this
chapter) AT (AAT )−1 corresponds to γ = ι = 0.

Now if we look at solutions of the linear system Ax = y with x ∈ R3 and y ∈ R2 we
find that x1 = −y1, x2 = 1/3y2, and that x3 is completely undetermined. So there is
an infinite set of solutions corresponding to the different values of x3.

4.7 Eigenvalues and Eigenvectors

Usually when a matrix operates on a vector, it changes the direction of the vector. But
for a special class of vectors, eigenvectors, the action of the matrix is to simply scale
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the vector:

Ax = λx. (4.67)

If this is true, then x is an eigenvector of the matrix A associated with the eigenvalue
λ. Now, λx equals λIx so we can rearrange this equation and write

(A− λI)x = 0. (4.68)

Clearly in order that x be an eigenvector we must choose λ so that (A − λI) has a
nullspace and we must choose x so that it lies in that nullspace. That means we must
choose λ so that Det(A − λI) = 0. This determinant is a polynomial in λ, called the
characteristic polynomial. For example if

A =

[
5 3
4 5

]
(4.69)

then the characteristic polynomial is

λ2 − 10λ+ 13 (4.70)

whose roots are

λ = 5 + 2
√

3, and λ = 5− 2
√

3. (4.71)

Now all we have to do is solve the two homogeneous systems:

[
2
√

3 3

4 2
√

3

] [
x1

x2

]
= 0 (4.72)

and [
−2
√

3 3

4 −2
√

3

] [
x1

x2

]
= 0 (4.73)

from which we arrive at the two eigenvectors

[ √
3

2

1

]
,

[
−
√

3
2

1

]
(4.74)

But note well, that these eigenvectors are not unique. Because they solve a homogeneous
system, we can multiply them by any scalar we like and not change the fact that they
are eigenvectors.

This exercise was straightforward. But imagine what would have happened if we had
needed to compute the eigenvectors/eigenvalues of a 10× 10 matrix. Can you imagine
having to compute the roots of a 10-th order polynomial? In fact, once you get past
order 4, there is no algebraic formula for the roots of a polynomial. The eigenvalue
problem is much harder than solving Ax = y.

The following theorem gives us the essential computational tool for using eigenvectors.
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Theorem 4 Matrix diagonalization Let A be an n× n matrix with n linearly inde-
pendent eigenvectors. Let S be a matrix whose columns are these eigenvectors. Then
S−1AS is a diagonal matrix Λ whose elements are the eigenvalues of A.

The proof is easy. The elements in the first column of the product matrix AS are
precisely the elements of the vector which is the inner product of A with the first
column of S. The first column of S, say s1, is, by definition, an eigenvector of A.
Therefore the first column of AS is λ1s1. Since this is true for all the columns, it
follows that AS is a matrix whose columns are λisi. But now we’re in business since

[λ1s1 λ2s2 · · ·λnsn] = [s1 s2 · · · sn] diag(λ1, λ2, · · · , λn) ≡ SΛ. (4.75)

Therefore AS = SΛ which means that S−1AS = Λ. S must be invertible since we’ve
assumed that all it’s columns are linearly independent.

Some points to keep in mind:

• Any matrix in Rn×n with n distinct eigenvalues can be diagonalized.

• Because the eigenvectors themselves are not unique, the diagonalizing matrix S
is not unique.

• Not all square matrices possess n linearly independent eigenvectors.

• A matrix can be invertible without being diagonalizable.

We can summarize these ideas with a theorem whose proof can be found in linear
algebra books.

Theorem 5 Linear independence of eigenvectors If n eigenvectors of an n × n
matrix correspond to n different eigenvalues, then the eigenvectors are linearly indepen-
dent.

An important class of matrices for inverse theory are the real symmetric matrices. The
reason is that since we have to deal with rectangular matrices, we often end up treating
the matrices ATA and AAT instead. And these two matrices are manifestly symmetric.
In the case of real symmetric matrices, the eigenvector/eigenvalue decomposition is
especially nice, since in this case the diagonalizing matrix S can be chosen to be an
orthogonal matrix Q.

Theorem 6 Orthogonal decomposition of a real symmetric matrix A real sym-
metric matrix A can be factored into

A = QΛQT (4.76)

with orthonormal eigenvectors in Q and real eigenvalues in Λ.
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4.8 Orthogonal decomposition of rectangular ma-

trices

For dimensional reasons there is clearly no hope of the kind of eigenvector decomposition
discussed above being applied to rectangular matrices. However, there is an amazingly
useful generalization that pertains if we allow a different orthogonal matrix on each side
of A. It is called the Singular Value Decomposition (SVD) and works for any matrix
whatsoever. Essentially the singular value decomposition generates orthogonal bases
of Rm and Rn simultaneously.

Theorem 7 Singular value decomposition Any matrix A ∈ Rn×m can be factored
as

A = UΛV T (4.77)

where the columns of U ∈ Rn×n are eigenvectors of AAT and the columns of V ∈ Rm×m

are the eigenvectors of ATA. Λ ∈ Rn×m is a rectangular matrix with the singular values
on its main diagonal and zero elsewhere. The singular values are the square roots of the
eigenvalues of ATA, which are the same as the nonzero eigenvalues of AAT . Further,
there are exactly r nonzero singular values, where r is the rank of A.

The columns of U and V span the four fundamental subspaces. The column space of A
is spanned by the first r columns of U . The row space is spanned by the first r columns
of V . The left nullspace of A is spanned by the last n − r columns of U . And the
nullspace of A is spanned by the last m− r columns of V .

A direct approach to the SVD, due to the physicist Lanczos[Lan61], is to make a
symmetric matrix out of the rectangular matrix A as follows: Let

S =

[
0 A
AT 0

]
. (4.78)

Since A is in Rn×m, S must be in R(n+m)×(n+m).

m by n or n by m? For the rest of this book we will interpret the matrix A
as mapping from the space of model parameters into the space of data–the forward
problem. So there are m parameters and n data. But, obviously this is unnecessary
for the interpretation of the results. Model space is simply Rm and data space is Rn.

And since S is symmetric it has orthogonal eigenvectors wi with real eigenvalues λi

Swi = λiwi. (4.79)

If we split up the eigenvector wi, which is in Rn+m, into an n-dimensional data part
and an m-dimensional model part

wi =

[
ui
vi

]
(4.80)
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then the eigenvalue problem for S reduces to two coupled eigenvalue problems, one for
A and one for AT

ATui = λivi (4.81)

Avi = λiui. (4.82)

We can multiply the first of these equations by A and the second by AT to get

ATAvi = λi
2vi (4.83)

AATui = λi
2ui. (4.84)

So we see, once again, that the model eigenvectors ui are eigenvectors of AAT and the
data eigenvectors vi are eigenvectors of ATA. Also note that if we change sign of the
eigenvalue we see that (−ui,vi) is an eigenvector too. So if there are r pairs of nonzero
eigenvalues ±λi then there are r eigenvectors of the form (ui,vi) for the positive λi and
r of the form (−ui,vi) for the negative λi.

Keep in mind that the matrices U and V whose columns are the date and model
eigenvectors are square (respectively n× n and m×m) and orthogonal. Therefore we
have UTU = UUT = In and V TV = V V T = Im. But it is important to distinguish
between the eigenvectors associated with zero and nonzero eigenvalues. Let Ur and
Vr be the matrices whose columns are the r model and data eigenvectors associated
with the r nonzero eigenvalues and U0 and V0 be the matrices whose columns are
the eigenvectors associated with the zero eigenvalues, and let Λr be the r × r square,
diagonal matrix containing the r nonzero eigenvalues. Then we have by 4.81 and 4.82
the following eigenvalue problem

AVr = UrΛr (4.85)

ATUr = VrΛr (4.86)

AV0 = 0 (4.87)

ATU0 = 0. (4.88)

Since the full matrices U and V satisfy UTU = UUT = In and V TV = V V T = Im it
can be readily seen that AV = UΛ implies A = UΛV T and therefore

A = [Ur, U0]

[
Λr 0
0 0

] [
V T
r

V T
0

]
= UrΛrV

T
r , (4.89)

This is the singular value decomposition. Notice that 0 represent rectangular matrices
of zeros. Since Λr is r × r and Λ is n × m then the lower left block of zeros must be
n− r× r, the upper right must be r×m− r and the lower right must be n− r×m− r.

It is important to keep the subscript r in mind since the fact that A can be recon-
structed from the eigenvectors associated with the nonzero eigenvalues means that the
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experiment is unable to see the contribution due to the eigenvectors associated with
zero eigenvalues.

Cornelius Lanczos was born in Hungary in 1893. His family name
was Löwy, but this was changed to avoid the prevailing sentiments in
Hungary against German names. Lanczos did his university work at
Budapest where he studied mathematics and physics. He did work
in general relativity throughout his life but made many important
contributions to numerical analysis, including the development of the
Fast Fourier Transform (25 years before Tukey). Lanczos’ books are
marvels of clarity. After fleeing Nazi Germany in the 1930s, Lanczos
took up residence first in the US and then in Dublin, Ireland, where
Schrödinger had built up a school of theoretical physics. He died on
a trip to his native land in 1974.

4.9 Orthogonal projections

Above we said that the matrices V and U were orthogonal so that V TV = V V T = Im
and UTU = UUT = In. There is a nice geometrical picture we can draw for these
equations having to do with projections onto lines or subspaces. Let vi denote the
ith column of the matrix V . (The same argument applies to U of course.) The outer
product viv

T
i is an m×m matrix. It is easy to see that the action of this matrix on a

vector is to project that vector onto the one-dimensional subspace spanned by vi:

(
viv

T
i

)
x = (vTi x)vi.

A “projection” operator is defined by the property that once you’ve applied it to a
vector, applying it again doesn’t change the result: P (Px) = Px, in other words. For
the operator viv

T
i this is obviously true since vTi vi = 1.

Now suppose we consider the sum of two of these projection operators: viv
T
i + vjv

T
j .

This will project any vector in Rm onto the plane spanned by vi and vj. We can
continue this procedure and define a projection operator onto the subspace spanned by
any number p of the model eigenvectors:

p∑

i=1

viv
T
i .

If we let p = m then we get a projection onto all of Rm. But this must be the identity
operator. In effect we’ve just proved the following identity:

m∑

i=1

viv
T
i = V V T = I.

0
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On the other hand, if we only include the terms in the sum associated with the r nonzero
singular values, then we get a projection operator onto the non-null space (which is the
row space). So

r∑

i=1

viv
T
i = VrV

T
r

is a projection operator onto the row space. By the same reasoning

m∑

i=r+1

viv
T
i = V0V

T
0

is a projection operator onto the null space. Putting this all together we can say that

VrV
T
r + V0V

T
0 = I.

This says that any vector in Rm can be written in terms of its component in the null
space and its component in the row space of A. Let x ∈ Rm, then

x = Ix =
(
VrV

T
r + V0V

T
0

)
x = (x)row + (x)null. (4.90)

4.10 A few examples

This example shows that often matrices with repeated eigenvalues cannot be diagonal-
ized. But symmetric matrices can always be diagonalized.

A =

[
3 1
0 3

]
(4.91)

The eigenvalues of this matrix are obviously 3 and 3. This matrix has a one-dimensional
family of eigenvectors; any vector of the form (x, 0)T will do. So it cannot be diagonal-
ized, it doesn’t have enough eigenvectors.

Now consider

A =

[
3 0
0 3

]
(4.92)

The eigenvalues of this matrix are still 3 and 3. But it will be diagonalized by any
invertible matrix! So, of course, to make our lives simple we will choose an orthogonal
matrix. How about

[
0 1
1 0

]
? (4.93)
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That will do. But so will
1√
2

[
−1 1
1 1

]
. (4.94)

So, as you can see, repeated eigenvalues give us choice. And for symmetric matrices we
nearly always choose to diagonalize with orthogonal matrices.

Exercises

1. Give specific (nonzero) examples of 2 by 2 matrices satisfying the following prop-
erties:

A2 = 0, A2 = −I2, and AB = −BA (4.95)

2. Let A be an upper triangular matrix. Suppose that all the diagonal elements
are nonzero. Show that the columns must be linearly independent and that the
null-space contains only the zero vector.

3. Figure out the column space and null space of the following two matrices:
[

1 −1
0 0

]
and

[
0 0 0
0 0 0

]
(4.96)

4. Which of the following two are subspaces of Rn: the plane of all vectors whose
first component is zero; the plane of all vectors whose first component is 1.

5. Let

x =

[
9
−12

]
. (4.97)

Compute ‖x‖1, ‖x‖2, and ‖x‖∞.

6. Define the unit `p-ball in the plane R2 as the set of points satisfying

‖x‖`p ≤ 1. (4.98)

Draw a picture of this ball for p = 1, 2, 3 and ∞.

7. Show that B = (ATA)−1AT is a left inverse and C = AT (AAT )−1 is a right inverse
of a matrix A, provided that AAT and ATA are invertible. It turns out that ATA
is invertible if the rank of A is equal to n, the number of columns; and AAT is
invertible if the rank is equal to m, the number of rows.

8. Consider the matrix [
a b
c d

]
(4.99)

The trace of this matrix is a + d and the determinant is ad− cb. Show by direct
calculation that the product of the eigenvalues is equal to the determinant and
the sum of the eigenvalues is equal to the trace.
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9. As we have seen, an orthogonal matrix corresponds to a rotation. Consider the
eigenvalue problem for a simple orthogonal matrix such as

Q =

[
0 −1
1 0

]
(4.100)

How can a rotation map a vector into a multiple of itself?

10. Show that the eigenvalues of Aj are the j-th powers of the eigenvalues of A.

11. Using the SVD show that
AAT = UΛΛTU (4.101)

and
ATA = V ΛTΛV. (4.102)

The diagonal matrices ΛΛT ∈ Rm×m and ΛTΛ ∈ Rn×n have different dimensions,
but they have the same r nonzero elements: σ1, σ2, · · · , σr.

12. Compute the SVD of the matrix

A =




1 1 0
0 0 1
0 0 −1


 (4.103)

directly by computing the eigenvectors of ATA and AAT . Show that the pseu-
doinverse solution to the linear system Ax = y where y = (1, 2, 1)T is given by
averaging the equations.

13. Prove that (Ax,y) = (x, ATy).

14. Prove that if Q is an orthogonal matrix, that Qx is a rotation of x.

15. What happens to the `p norm if p < 1? For example, is

(
n∑

i=1

|xi|1/2
)2

(4.104)

a norm?
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Chapter 5

SVD and Resolution in Least
Squares

In section 4.8 we introduced the singular value decomposition (SVD). The SVD is a
natural generalization of the eigenvector decomposition to arbitrary (even rectangular)
matrices. It plays a fundamental role in linear inverse problems.

5.0.1 A Worked Example

Let’s begin by doing a worked example. Suppose that

A =

[
1 1 0
0 0 1

]

and hence that

AT =




1 0
1 0
0 1


 , ATA =




1 1 0
1 1 0
0 0 1


 , AAT =

[
2 0
0 1

]

The eigenvalue problem for AAT is easy; since it is diagonal, its diagonal entries are
the eigenvalues. To find the eigenvalues of ATA we need to find the roots of the
characteristic polynomial

Det

∣∣∣∣∣∣∣

1− λ 1 0
1 1− λ 0
0 0 1− λ

∣∣∣∣∣∣∣
= (1− λ)

[
(1− λ)2 − 1

]
= 0

which are 2, 1 and 0.

Now we can compute the data eigenvectors ui by solving the eigenvalue problem

1
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AATui = λ2
iui

for λ2
i equal to 2 and 1. So

[
2 0
0 1

](
u11

u21

)
= 2

(
u11

u21

)
.

The only way this can be true is if

u1 =

(
1
0

)
.

Similarly, for λ2
i = 1 we have

u2 =

(
0
1

)
.

In this example, there is no data null space:

Ur = U =

[
1 0
0 1

]

We could also solve the eigenvalue problem for ATA to get the model eigenvectors vi,
but a shortcut is to take advantage of the coupling of the model and data eigenvectors,
namely that ATUr = VrΛr, so all we have to do is take the inner product of AT with
the data eigenvectors and divide by the corresponding singular value. But remember,
the singular value is the square root of λ2, so

v1 =
1√
2




1 0
1 0
0 1



(

1
0

)
=




1√
2

1√
2

0




and

v2 =




1 0
1 0
0 1



(

0
1

)
=




0
0
1


 .

This gives us

Vr =




1√
2

0
1√
2

0

0 1


 .

To find the model null space we must solve AV0 = 0:

[
1 1 0
0 0 1

]

v13

v23

v33


 = 0.

1
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This means that v13 + v23 = 0 and v33 = 0, so the normalized model null space singular
vector is

V0 =




− 1√
2

1√
2

0


 .

We can verify the SVD directly
A = UrΛrV

T
r

=

[
1 0
0 1

] [ √
2 0

0 1

]



1√
2

0
1√
2

0

0 1




T

=

[
1 1 0
0 0 1

]

Remember, the only way that there can be no null space at all (no U0 or V0) is if
n = m = r.

5.0.2 The Generalized Inverse

Recall the SVD of A is A = UΛV T . U is n× n, V is m ×m and Λ is n×m. If there
are no zero singular values the following matrix provides a one-sided inverse of A:

A† = V Λ−1UT

where Λ−1 refers to the m × n matrix with 1/λi on its main diagonal. The matrix A†

is called the generalized inverse of A, or the pseudo-inverse. Be careful to keep the
dimensions straight; in the SVD

A = UΛV T

we know that V must be m×m (its columns span model space) and U must be n× n
(its columns span data space). Therefore Λ must be n×m. Similarly if we write

V Λ−1UT

it is clear that Λ−1 must refer to an m× n matrix. a

Whether A† will be a left inverse or a right inverse depends on whether there are more
equations than unknowns (n ≥ m) or fewer (m ≥ n). There is a two-sided (ordinary)
inverse if and only if m = n = r, where r is the rank. To see how this goes consider a
concrete case, m = 3 and n = r = 2 So

Λ =

[
λ1 0 0
0 λ2 0

]
n×m

aFor this reason perhaps it is an abuse of notation to write Λ−1. Perhaps we should write Λ† instead.
The main danger of the current notation is that one is tempted to assume that Λ−1Λ = ΛΛ−1 = I ,
which, as we have seen is not true in general.

1
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and hence

Λ−1 =




1/λ1 0
0 1/λ2

0 0


 . m× n

Since A† is V Λ−1UT then

A†A = V Λ−1UTUΛV T = V Λ−1ΛV T .

Unfortunately we cannot simply replace Λ−1Λ by the identity:



1/λ1 0
0 1/λ2

0 0



[
λ1 0 0
0 λ2 0

]
=




1 0 0
0 1 0
0 0 0


 .

Therefore
V Λ−1ΛV T 6= I.

On the other hand if we multiply A on the right by A† we get

AA† = UΛΛ−1UT .

And

ΛΛ−1 =

[
λ1 0 0
0 λ2 0

] 


1/λ1 0
0 1/λ2

0 0


 =

[
1 0
0 1

]
.

So in this case we can see that A† is a right inverse but not a left inverse. You can
verify for yourself that if there were more unknowns than data (n ≥ m), A† would be
a left inverse of A.

If there are zero singular values, then the only thing different we must do is project out
those components. The SVD then becomes:

A = UrΛrV
T
r .

The generalized inverse is then defined to be

A† ≡ VrΛ
−1
r UT

r .

Note that in this case Λr is an r × r matrix so

A†A = VrV
T
r

and
AA† = UrU

T
r .

The first of these is an identity matrix only if r = m and the second only if r = n. You
will show in an exercise however that in any case

A†AA† = A†

AA†A = A

Let us explore the significance of the generalized inverse bit by bit. This discussion is
patterned on that in Chapter 12 of [AR80].
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No Null Space

First consider the case in which there is no data or model null space. This can only
happen when r = m = n, in which case the generalized inverse is the ordinary inverse.

A Data Null Space

Next consider the case in which there is a data null space U0 but no model null space
(n > m). Since ATU0 = 0, it follows that UT

0 A = 0. And hence, the forward operator
A always maps models into vectors that have no component in U0. That means that if
there is a data null space, and if the data have a component in this null space,
then it will be impossible to fit them exactly.

That being the case, it would seem reasonable to try to minimize the misfit between
observed and predicted data, say,

min ‖Am− d‖2, (5.1)

where m is an element of the model space. I.e., least-squares. A least-squares minimiz-
ing model must be associated with a critical point of this mis-fit function. Differenti-
ating Equation 5.1 with respect to m and setting the result equal to zero results in the
normal equations:

ATAm = ATd. (5.2)

There are many ways to derive the normal equations. In the next section we will derive
them without using any calculus. But it is not too hard to do the differentiation in
Equation 5.1. First, write the norm-squared as an inner product:

‖Am− d‖2 = (Am− d, Am− d).

Expand this. You’ll get a sum of 4 inner products, such as (Am, Am). You can
differentiate these with respect to each of the components of m if you like, but you
can do this in vector notation with a little practice. For instance, the derivative of
(m,m) with respect to m is 2m. The derivative of (m, a) (which equals (a,m))
with respect to m is a. Further, since (Am, Am) = (ATAm,m) = (m, ATAm), the
derivative of (Am, Am) with respect to m is 2ATAm. You can move A back and forth
across the inner product just by taking the transpose.

Now, by Equation 4.89

ATA = (UrΛrV
T
r )TUrΛrV

T
r = VrΛ

T
r U

T
r UrΛrV

T
r .

At this point we have to be a bit careful. We can be sure that UUT = UTU = In, an
n-dimensional identity. And that V V T = V TV = Im. But this is not true of Vr if there

1
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is a V0 space, or Ur if there is a U0 space. All we can be certain of is that V T
r Vr and

UT
r Ur will be r−dimensional identity matrices, So we do know that

ATA = VrΛ
2
rV

T
r .

ATA is certainly invertible (since in this case there is assumed to be no model null
space) so the least squares solution is

mls = (VrΛ
2
rV

T
r )−1(UrΛrV

T
r )Td = VrΛ

−1
r UT

r d.

But this is precisely A†d. Let us denote the generalized inverse solution by m† = A†d.
In the special case that there is no model null space V0, mls = m†.b

Now we saw above that A maps arbitrary model vectors m into vectors that have no
component in U0. On the other hand it is easy to show (using the SVD) that

UT
r (d− Am†) = UT

r d− UT
r UrU

T
r d = 0.

This means that Am† (since it lies in Ur) must be perpendicular to d− Am† (since it
lies in U0).

A Geometrical Interpretation of Least Squares [Str88]

If d were in the column space of A, then there would exist a vector m such that
Am = d. On the other hand, if d is not in the column space of A a reasonable strategy
is to try to find an approximate solution from within the column space. In other words,
find a linear combination of the columns of A that is as close as possible in a least
squares sense to the data. Let’s call this approximate solution mls. Since Amls is, by
definition, confined to the column space of A then Amls − d (the error in fitting the
data) must be in the orthogonal complement of the column space. (The orthogonal
complement was defined on page 47.) The orthogonal complement of the column space
is the left null space, so Amls − d must get mapped into zero by AT :

AT
(
Amls − d

)
= 0

or
ATAmls = ATd

which is just the normal equation again. Now we saw in the last chapter that the
outer product of a vector or matrix with itself defined a projection operator onto the
subspace spanned by the vector (or columns of the matrix). If we look again at the
normal equations and assume for the moment that the matrix ATA is invertible, then
the least squares solution is:

mls = (ATA)−1ATd

bm† is the generalized inverse solution, A†d. It turns out this is unique, as we will prove shortly.
mls is any solution of the normal equations. The complete connection between these two concepts will
be made shortly when we treat the case of a model null space.
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Now A applied to the least squares solution is the approximation to the data from
within the column space. So Amls is precisely the projection of the data d onto the
column space:

Amls = A(ATA)−1ATd.

Before when we did orthogonal projections, the projecting vectors/matrices were or-
thogonal, so the ATA term would have been the identity, but the outer product structure
in Amls is evident.

The generalized inverse projects the data onto the column space of A.

A few observations:

• When A is invertible (square, full rank) A(ATA)−1AT = AA−1(AT )−1AT = I, so
every vector projects onto itself.

• ATA has the same null space as A. Proof: clearly if Am = 0, then ATAm = 0.
Going the other way, suppose ATAm = 0. Then mTATAm = 0. But this can
also be written as (Am, Am) = ‖Am‖2 = 0. By the properties of the norm,
‖Am‖2 = 0⇒ Am = 0.

• As a corollary of this, if A has linearly independent columns (i.e., the rank r = m)
then ATA is invertible.

A Model Null Space

Now let us consider the existence of a model null space V0 (but no data null space U0),
so m > n ≥ r. Once again, using the SVD, we can show that (since m† = A†d)

Am† = AA†d = UrΛrV
T
r VrΛ

−1
r UT

r d = d

since V T
r Vr = Ir and UrU

T
r = Ir = In. But since m† is expressible in terms of the Vr

vectors (and not the V0 vectors), it is clear that the generalized inverse solution is a
model that satisfies Am† = d but is entirely confined to Vr.

A consequence of this is that an arbitrary least squares solution (i.e., any solution of
the normal equations) can be represented as the sum of the generalized solution with
some component in the model null space:

mls = m† +
M∑

i=r+1

αivi (5.3)

1
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where by mls we mean any solution of the normal equations. An immediate consequence
of this is that the length of mls must be at least as great as the length of m† since

‖mls‖2 = ‖m†‖2 +
M∑

i=r+1

α2
i . (5.4)

To prove this just remember that ‖mls‖2 is the dot product of mls with itself. Take the
dot product of the right-hand-side of Equation 5.3 with itself. Not only are the vectors
vi mutually orthonormal, but they are orthogonal to m† since m† lives in Vr and Vr is
orthogonal to V0.

This is referred to the minimum norm property of the generalized inverse. Of all the
infinity of solutions of the normal equations (assuming there is a model null space), the
generalized inverse solution is the one of smallest length.

Both a Model and a Data Null Space

In the case of a data null space, we saw that the generalized inverse solution minimized
the least squares mis-fit of data and model response. While in the case of a model null
space, the generalized inverse solution minimized the length of the solution itself. If
there are both model and data null spaces, then the generalized inverse simultaneously
optimizes these goals. As an exercise, set the derivative of

‖Am− d‖2 + ‖m‖2

with respect to m equal to zero. The calculation is sketched on page 63. You should
get the following generalization of the normal equations:

(
ATA+ I

)
m = ATd.

You can show that the matrix ATA+ I is invertible for any A. How?

5.0.3 Examples

Consider the linear system

[
1 1 0
0 0 1

]

m1

m2

m3


 =

(
1
1

)
.

From the SVD we have

A† =




1
2

0
1
2

0
0 1

.




1
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It is obvious that m3 = 1 and that there are not enough equations to specify m1 or m2.
All we can say at this point is that m1 + m2 = 1. Some possible solutions then are:
m1 = 0, m2 = 1, m1 = 1, m2 = 0, m1 = .5, m2 = .5, and so on. All of these choices
explain the “data”.

The generalized inverse solution is A†d = (1/2, 1/2, 1)T . Here we see the key feature of
least squares (or generalized inverses): when faced with uncertainty least squares splits
the difference.

5.0.4 Resolution

Resolution is all about how precisely one can infer model parameters from data. The
issue is complicated by all of the uncertainties that exist in any inverse problem: un-
certainties in the forward modeling, the discretization of the model itself (i.e., replacing
continuous functions by finite-dimensional vectors), noise in the data, and uncertain-
ties in the constraints or a priori information we have. This is why we need a fairly
elaborate statistical machinery to tackle such problems. However, there are situations
in which resolution becomes relatively straightforward–whether these situations pertain
in practice is another matter.

One of these occurs when the problem is linear and the only uncertainties arise from
random noise in the data. In this case the true Earth model is linearly related to the
observed data by d = Am+e where e is an n-dimensional vector of random errors. The
meaning of this equation is as follows: if there were no random noise in the problem,
e would be zero and the true Earth model would predict the data exactly (d = Am).
We could then estimate the true model by applying the pseudo-inverse of A to the
measurements. On the other hand, if e is nonzero, d = Am + e, we still get the
generalized inverse solution by applying the pseudo-inverse to the data: m† = A†d. It
follows that

m† = A† (Am + e) . (5.5)

Later on we will discuss the error term explicitly. For now we can finesse the issue by
assuming that the errors have zero mean, in which case if we simply take the average
of Equation 5.5 the error term goes away.c For now let’s simply assume that the errors
are zero

m† = A†Am. (5.6)

This result can be interpreted as saying that the matrix A†A acts as a kind of filter
relating the true Earth model to the computed Earth model. Thus, if A†A were equal

cAfter we discuss probability in more detail we would take expectations as follows:

E[m†] = E[A† (Am + e)] = A†Am +A†E[e] = A†Am

since if the data have zero mean, E[e] = 0.

1
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to the identity matrix, we would have perfect resolution. Using the SVD we have

m† = VrΛ
−1
r UT

r UrΛrV
T
r m = VrV

T
r m.

We can use UT
r Ur = I whether there is a data null space or not. So in any case the

matrix VrV
T
r is the “filter” relating the computed Earth parameters to the true ones.

In the example above, with

A =

[
1 1 0
0 0 1

]

the resolution matrix VrV
T
r is equal to




1√
2

1√
2

0
1√
2

1√
2

0

0 0 1


 .

This says that the model parameter m3 is perfectly well resolved, but that we can only
resolve the average of the first two parameters m1 and m2. The more nonzero terms that
appear in the rows of the resolution matrix, the more broadly averaged our inferences
of the model parameters.

Data resolution is connected to the fact that the observed data may be different than
the data predicted by the generalized inverse. The latter is just Am†. But this is AA†d.
So if we call this d†, then we have a relation very similar to that given by the resolution
matrix:

d† = AA†d = UrΛrV
T
r VrΛ

−1
r UT

r d = UrU
T
r d

so we can think of the matrix UrU
T
r as telling us about how well the data are predicted

by the computed model. In our example above, there is no data null space, so the data
are predicted perfectly. But if there is a data null space then the row vectors of UrU

T
r

will represent averages of the data.
Exercises

1. Verify the following two “Penrose conditions”:

A†AA† = A†

AA†A = A

2. Show that minimizing
‖Am− d‖2 + λ‖m‖2

with respect to m leads to the following generalized “normal equations”
(
ATA+ λI

)
m = ATd.

3. Show that ATA + λI is always an invertible matrix.

1
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Chapter 6

A Summary of Probability and
Statistics

Collected here are a few basic definitions and ideas. Fore more details consult a textbook
on probability or mathematical statistics, for instance [Sin91], [Par60], and [Bru65].
We begin with a discussion of discrete probabilites, which involves counting sets. Then
we introduce the notion of a numerical valued random variable and random physical
phenomena. The main goal of this chapter is to develope the tools we need to charac-
terize the uncertainties in both geophysical data sets and in the description of Earth
models—at least when we have our Bayesian hats on. So the chapter culminates with a
discussion of various descriptive statistics numerical data (means, variances, etc). Most
of the problems that we face in geophysics involves spatially or temporally varying
random phenomena, also known as stochastic processes; e.g., velocity as a function of
space. For everything we will do in this course, however, it suffices to consider only finite
dimensional vector-valued random variables, such as we would measure by sampling a
random function at discrete times or spatial locations.

6.1 Sets

Probability is fundamentally about measuring sets. The sets can be finite, as in the
possible outcomes of a toss of a coin, or infinite, as in the possible values of a measured
P-wave impedance. The space of all possible outcomes of a given experiment is called
the sample space. We will usually denote the sample space by Ω. If the problem is
simple enough that we can enumerate all possible outcomes, then assigning probabilities
is easy.

0
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Figure 6.1: Examples of the intersection, union, and complement of sets.

Example 1

Toss a fair die twice. By “fair” we mean that each of the 6 possible outcomes is equally
likely. The sample space for this experiment consists of {1, 2, 3, 4, 5, 6}. There are six
possible equally likely outcomes of tossing the die. There is only one way to get any
given number 1 − 6, therefore if A is the event that we toss a 4, then the probability
associated with A, which we will call P (A) is

P (A) =
N(A)

N(Ω)
=

1

6
(6.1)

where we use N(A) to denote the number of possible ways of achieving event A and
N(Ω) is the size of the sample space.

6.1.1 More on Sets

The union of two sets A and B consists of all those elements which are either in A or
B; this is denoted by A∪B or A+B The intersection of two sets A and B consists of
all those elements which are in both A and B; this is denoted by A ∩B or simply AB.
The complement of a set A relative to another set B consists of those elements which
are in A but not in B; this is denoted by A− B. Often, the set B is this relationship
is the entire sample space, in which case we speak simply of the complement of A and
denote this by Ac. These ideas are illustrated in Figure 6.1
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6.1 Sets 73

The set with no elements in it is called the empty set and is denoted ∅. Its probability
is always 0

P (∅) = 0. (6.2)

Since, by definition, the sample space contains all possible outcomes, its probability
must always be 1

P (Ω) = 1. (6.3)

The other thing we need to be able to do is combine probabilities:a

P (A ∪ B) = P (A) + P (B)− P (AB). (6.4)

P (AB) is the probability of the event A intersect B, which means the event A and B.
In particular, if the two events are exclusive, i.e., if AB = 0 then

P (A ∪ B) = P (A) + P (B). (6.5)

This result extends to an arbitrary number of exclusive events Ai

P (A1 ∪ A2 ∪ · · · ∪ An) =
n∑

i=1

P (Ai). (6.6)

This property is called additivity. Events A and B are said to be independent if
P (AB) = P (A)P (B).

Example 2

Toss the fair die twice. The sample space for this experiment consists of

{{1, 1}, {1, 2}, . . .{6, 5}, {6, 6}}. (6.7)

Let A be the event that the first number is a 1. Let B be the event that the second
number is a 2. The the probability of both A and B occurring is the probability of the
intersection of these two sets. So

P (AB) =
N(AB)

N(Ω)
=

1

36
(6.8)

Example 3

A certain roulette wheel has 4 numbers on it: 1, 2, 3, and 4. The even numbers are
white and the odd numbers are black. The sample space associated with spinning the
wheel twice is

{{1, 1}, {1, 2}, {1, 3}, {1, 4}}
aThat P (A ∪B) = P (A) + P (B) for exclusive events is a fundamental axiom of probability.

0



74 A Summary of Probability and Statistics

{{2, 1}, {2, 2}, {2, 3}, {2, 4}}
{{3, 1}, {3, 2}, {3, 3}, {3, 4}}
{{4, 1}, {4, 2}, {4, 3}, {4, 4}}

Now, in terms of black and white, the different outcomes are

{{black, black}, {black,white}, {black, black}, {black,white}}

{{white, black}, {white,white}, {white, black}, {white,white}}
{{black, black}, {black,white}, {black, black}, {black,white}}
{{white, black}, {white,white}, {white, black}, {white,white}}

Let A be the event that the first number is white, and B the event that the second
number is white. Then N(A) = 8 and N(B) = 8. So P (A) = 8/16 and P (B) = 8/16.
The event that both numbers are white is the intersection of A and B and P (AB) =
4/16.

Suppose we want to know the probability of the second number being white given that
the first number is white. We denote this conditional probability by P (B|A). The only
way for this conditional event to be true if both B and A are true. Therefore, P (B|A)
is going to have to be equal to N(AB) divided by something. That something cannot
be N(Ω) since only half of these have a white number in the first slot, so we must divide
by N(A) since these are the only events for which the event B given A could possibly
be true. Therefore we have

P (B|A) =
N(AB)

N(A)
=
P (AB)

P (A)
(6.9)

assuming P (A) is not zero, of course. The latter equality holds because we can divide

the top and the bottom of N(AB)
N(A)

by N(Ω).

As we saw above, for independent events P (AB) = P (A)P (B). Therefore it follows
that for independent events P (B|A) = P (B).

6.2 Random Variables

If we use a variable to denote the outcome of a random trial, then we call this a random
variable. For example, let d denote the outcome of a flip of a fair coin. Then d is
a random variable with two possible values, heads and tails. A given outcome of a
random trial is called a realization. Thus if we flip the coin 100 times, the result is 100
realizations of the random variable d. Later in this book we will find it necessary to
invent a new notation so as to distinguish a realization of a random process from the
random process itself, the later being usually unknown.
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6.2.1 A Definition of Random

It turns out to be difficult to give a precise mathematical definition of randomness, so
we won’t try. (A brief perusal of randomness in Volume 2 of Knuth’s great The Art of
Computer Programming is edifying and frustrating in equal measures.) In any case it is
undoubtedly more satisfying to think in terms of observations of physical experiments.
Here is Parzen’s (1960) definition, which is as good as any:

A random (or chance) phenomenon is an empirical phenomenon character-
ized by the property that its observation under a given set of circumstances
does not always lead to the same observed outcomes (so that there is no
deterministic regularity) but rather to different outcomes in such a way that
there is statistical regularity. By this is meant that numbers exist between
0 and 1 that represent the relative frequency with which the different pos-
sible outcomes may be observed in a series of observations of independent
occurrences of the phenomenon. ... A random event is one whose relative
frequency of occurrence, in a very long sequence of observations of randomly
selected situations in which the event may occur, approaches a stable limit
value as the number of observations is increased to infinity; the limit value
of the relative frequency is called the probability of the random event

It is precisely this lack of deterministic reproducibility that allows us to reduce random
noise by averaging over many repetitions of the experiment.

6.2.2 Generating random numbers on a computer

Typically computers generate “pseudo-random” numbers according to deterministic
recursion relations called Congruential Random Number Generators, of the form

X(n+ 1) = (aX(n) + c) mod m (6.10)

where a and b are constants and m is called the modulus. (E.g., 24 = 12 (mod 12).)
The value at the step n is determined by the value and step n− 1.

The modulus defines the maximum period of the sequence; but the multiplier a and the
shift b must be properly chosen in order that the sequence generate all possible integers
between 0 and m− 1. For badly chosen values of these constants there will be hidden
periodicities which show up when plotting groups of k of these numbers as points in
k-dimensional space.

To implement Equation 6.10 We need four magic numbers:

• m, the modulus m > 0
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• a, the multiplier 0 ≤ a < m

• c, the increment 0 ≤ c < m

• X(0), the starting value (seed) 0 ≤ X(0) < m.

Here’s an example. Take X(0) = a = c = 7 and take m = 10. Then the sequence of
numbers generated by our recursion is:

7, 6, 9, 0, 7, 6, 9, 0, ...

Woops. The sequence begins repeating on the fourth iteration. This is called a period-
icity. Fortunately, for better choices of the magic numbers, we can generate sequences
that do not repeat until n is quite large. Perhaps as large as 264 or larger. But in all
cases, such linear congruential “random number” generators are periodic.

A large portion of Volume II of Knuth’s treatise on computer programming [Knu81]
is devoted to computer tests of randomness and to theoretical defintions. We will not
discuss here how good choices of the magic numbers are made, except to quote Theorem
A, from section 3.2.1.2, volume 2 of [Knu81].

Theorem 8 The linear congruential sequence defined by m, a, c, and X(0) has period
length m if and only if

• c is relatively prime to m [i.e., if the greatest common divisor of c and m is 1]

• b = a− 1 is a multiple of p, for every prime p dividing m

• b is a multiple of 4, if m is a multiple of 4.

In any case, the key point is that when you use a typical random number generator,
you are tapping into a finite sequence of numbers. The place where you jump into
the queue is called the seed. The sequence is purely deterministic (being generated by
recursion), and we must rely on some other analysis to see whether or not the numbers
really do look “random.”

This led to a famous quote by one of the fathers of modern computing:

Anyone who considers arithmetical methods of producing random digits is, of course,
in a state of sin. – John von Neumann (1951)

Any deterministic number generator, such as the recursion above, which is designed
to mimic a random process (i.e., to produce a sequence of numbers with no apparent
pattern) is called a pseudo-random number generator (PRNG). Virtually all of the

0
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so-called random number generators used today are in fact pseudo-random number
generators. This may seem like an minor point until you consider that many important
numerical algorithms (so-called Monte Carlo methods) rely fundamentally on being
able to make prodigious use of random numbers. Unsuspected periodicities in pseudo-
random number generators have led to several of important physics papers being called
into question.

Can we do better than PRNG? Yes and no. Yes we can, but not practically at the
scale required by modern computing. To see a pretty good random process, watch the
lottery drawing on TV some time. State lotteries usually make use of the classic “well
stirred urn”. How about aiming an arrow at a distant target. Surely the spread of the
arrows is random. In fact, one of the words we use for random phenomena (stochastic)
comes from a Greek word which means to aim. Or tune your radio to an unallocated
channel and listen to the static. Amplify this static, feed it through an A/D board into
your computer and voila: random numbers. Suspend a small particle (a grain of pollen
for instance) in a dish of water and watch the particle under a microscope. (This is
called Brownian motion, after Robert Brown, the 19th century Scottish botanist who
discovered it.) Turn on a Geiger counter (after Hans Geiger, the 20th century German
physicist) near some source of radioactivity and measure the time between clicks. Put
a small marker in a turbulent fluid flow, then measure the position of the marker.
The fluctuations in sea height obtained from satellite altimetry. There are countless
similarly unpredictable phenomena, but the question is: could we turn any of these into
useful RNG? It’s been tried (see Knuth, 1973). But the appetite of modern physical
means of computing random numbers may not be able to keep up with the voracious
needs of Monte Carlo computer codes. Further, we would have to store all the numbers
in a big table so that we could have them to reuse, else we couldn’t debug our codes
(they wouldn’t be repeatable).

Under Linux, true random numbers are available by reading /dev/random. This gen-
erator gathers environmenal noise (from hardware devices, such as mouse movements,
keystrokes, etc.) and keeps track of how much disorder (entropy) is available. When
the entropy pool is empty, further reads to /dev/random will be blocked. (For more
information see the man page for random.) This means that the number of strong ran-
dom numbers is limited; it may be inadequate for numerical simulations, such as Monte
Carlo calculuations, that require vast quantities of such numbers. For a more extensive
discussion of “true radom numbers” see the web page www.random.org, from which you
can download true random numers or surf to other sites that provide them.
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Here is a simple Scilab function for generating normally distributed pseudo-random
numbers, by transforming uniformly distributed numbers.

function [z] = gaussiansamples(n,m,s)

// returns n pseudorandom samples from a normal distribution

// with mean m and standard deviation s. This is based on the

// Box-Muller transformation algorithm which is well-known to

// be a poor choice.

uniform1 = rand(n,1);

uniform2 = rand(n,1);

Pi = atan(1) * 4;

gauss1 = cos(Pi * uniform1) .* sqrt(-2 * log(uniform2));

// gauss2 = sin(2 *Pi * uniform1) .* sqrt(-2 * log(uniform2));

z = (s .* gauss1) + m;

// you can return the 2n samples generated by using gauss2 if you want

6.3 Bayes’ Theorem

Above we showed with a simple example that the conditional probability P (B|A) was
given by

P (B|A) =
N(AB)

N(A)
=
P (AB)

P (A)
. (6.11)

Let’s write this as
P (AB) = P (B|A)P (A). (6.12)

Now, the intersection of A and B is clearly the same as the intersection of B and A.
So P (AB) = P (BA). Therefore

P (AB) = P (B|A)P (A) = P (BA) = P (A|B)P (B). (6.13)

So we have the following relations between the two different conditional probabilities
P (A|B) and P (B|A)

P (B|A) =
P (A|B)P (B)

P (A)
. (6.14)

and

P (A|B) =
P (B|A)P (A)

P (B)
. (6.15)
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These are known as Bayes’ theorem.

Suppose we have n mutually exclusive and exhaustive events Ci. By mutually exclusive
we meant that the intersection of any two of the Ci is the empty set (the set with no
elements)

CiCj = ∅. (6.16)

By exhaustive we meant that the union of all the Ci fills up the entire sample space
(i.e., the certain event)

C1 ∪ C2 ∪ · · · ∪ Cn = Ω. (6.17)

It is not difficult to see that for any event B, we have

P (B) = P (BC1) + P (BC2) + · · ·P (BCn). (6.18)

You can think of this as being akin to writing a vector as the sum of its projections
onto orthogonal (independent) directions (sets). Since the Ci are independent and
exhaustive, every element in B must be in one of the intersections BCi; and no element
can appear in more than one. Therefore B = BC1 ∪ · · ·BCn, and the result follows
from the additivity of probabilities. Finally, since we know that for any Ci P (BCi) =
P (B|Ci)P (Ci) it follows that

P (B) = P (B|C1)P (C1) + P (B|C2)P (C2) + · · ·P (B|Cn)P (Cn). (6.19)

This gives us the following generalization of Bayes’ Theorem

P (Ci|B) =
P (BCi)

P (B)
=

P (B|Ci)P (Ci)∑n
j=1 P (B|Cj)P (Cj)

. (6.20)

Thomas Bayes (1702-1761) is best known for his theory of probabil-
ity outlined in his Essays towards solving a problem in the doctrine
of chances published in the Philosophical transactions of the Royal
Society (1763). He wrote a number of other mathematical essays but
none were published during his lifetime. Bayes was a nonconcormist
minister who preached at the Presbyterian Chapel in Turbridge Wells
(south of London) for over 30 years. He was elected a fellow of the
Royal Society in 1742.

6.4 Probability Functions and Densities

So far in this chapter we have dealt only with discrete probabilities. The sample space
Ω has consisted of individual events to which we can assign probabilities. We can
assign probabilities to collections of events by using the rules for the union, intersection
and complement of events. So the probability is a kind of measure on sets. 1) It’s
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Figure 6.2: The title of Bayes’ article, published posthumously in the Philosophical
Transactions of the Royal Society, Volume 53, pages 370–418, 1763

Figure 6.3: Bayes’ statement of the problem.

0



6.4 Probability Functions and Densities 81

always positive, 2) it’s zero on the null set (the impossible event), 3) it’s one on the
whole sample space (the certain event), 4) and it satisfies the additivity property for
an arbitrary collection of mutually independent events Ai:

P (A1 ∪ A2 ∪ · · · ∪ An) = P (A1) + P (A2) + · · ·P (An). (6.21)

These defining properties of a probability function are already well known to us in
other contexts. For example, consider a function M which measures the length of a
subinterval of the unit interval I = [0, 1]. If 0 ≤ x1 ≤ x2 ≤ 1, then A = [x1, x2] is a
subinterval of I. Then M(A) = x2 − x1 is always positive unless the interval is empty,
x1 = x2, in which case it’s zero. If A = I, then M(A) = 1. And if two intervals are
disjoint, the measure (length) of the union of the two intervals is the sum of the length
of the individual intervals. So it looks like a probability function is just a special kind
of measure, a measure normalized to one.

Now let’s get fancy and write the length of an interval as the integral of some function
over the interval.

M(A) =
∫

A
µ(x) dx ≡

∫ x2

x1

µ(x) dx. (6.22)

In this simple example using cartesian coordinates, the density function µ is equal to a
constant one. But it suggests that more generally we can define a probability density
such that the probability of a given set is the integral of the probability density over
that set

P (A) =
∫

A
ρ(x) dx (6.23)

or, more generally,

P (A) =
∫

A
ρ(x1, x2, . . . , xn) dx1 dx2 · · ·dxn. (6.24)

Of course there is no reason to restrict ourselves to cartesian coordinates. The set
itself is independent of the coordinates used and we can transform from one coordinate
system to another via the usual rules for a change of variables in definite integrals.

Yet another representation of the probability law of a numerical valued random phe-
nomenon is in terms of the distribution function F (x). F (x) is defined as the probability
that the observed value of the random variable will be less than x:

F (x) = P (X < x) =
∫ x

−∞
ρ(x′) dx′. (6.25)

Clearly, F must go to zero as x goes to −∞ and it must go to one as x goes to +∞.
Further, F ′(x) = ρ(x).

Example

∫ ∞

−∞
e−x

2

dx =
√
π. (6.26)
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This integral is done on page 104. Let Ω be the real line −∞ ≤ x ≤ ∞. Then
ρ(x) = 1√

π
e−x

2
is a probability density on Ω. The probability of the event x ≥ 0, is

then

P (x ≥ 0) =
1√
π

∫ ∞

0
e−x

2

dx =
1

2
. (6.27)

The probability of an arbitrary interval I ′ is

P (x ∈ I ′) =
1√
π

∫

I′
e−x

2

dx (6.28)

Clearly, this probability is positive; it is normalized to one

P (−∞ ≤ x ≤ ∞) =
1√
π

∫ ∞

−∞
e−x

2

dx = 1; (6.29)

the probability of an empty interval is zero.

6.4.1 Expectation of a Function With Respect to a Probability

Law

Henceforth, we shall be interested primarily in numerical valued random phenomena;
phenomena whose outcomes are real numbers. A probability law for such a phenomena
P , can be thought of as determining a (in general non-uniform) distribution of a unit
mass along the real line. This extends immediately to vector fields of numerical valued
random phenomena, or even functions. Let ρ(x) be the probability density associated
with P , then we define the expectation of a function f(x) with respect to P as

E[f(x)] =
∫ ∞

−∞
f(x)ρ(x) dx. (6.30)

Obviously this expectation exists if and only if the improper integral converges. The
mean of the probability P is the expectation of x

E[x] =
∫ ∞

−∞
xρ(x) dx. (6.31)

For any real number ξ, we define the n-th moment of P about ξ as E[(x − ξ)n]. The
most common moments are the central moments, which correspond to E[(x− x̄)n]. The
second central moment is called the variance of the probability law.

Keep in mind the connection between the ordinary variable x and the random variable
itself; let us call the latter X. Then the probability law P and the probability density
p are related by

P (X < x) =
∫ x

−∞
ρ(x′) dx′. (6.32)

We will summarize the basic results on expectations and variances later in this chapter.
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6.4 Probability Functions and Densities 83

6.4.2 Multi-variate probabilities

We can readily generalize a one-dimensional distribution such

P (x ∈ I1) =
1√
π

∫

I1
e−x

2

dx, (6.33)

where I1 is a subset of R1, the real line, to two dimensions:

P ((x, y) ∈ I2) =
1

π

∫ ∫

I2
e−(x2+y2) dx dy (6.34)

where I2 is a subset of the real plane R2. So ρ(x, y) = 1
π
e−(x2+y2) is an example of a joint

probability density on two variables. We can extend this definition to any number of
variables. In general, we denote by ρ(x1, x2, ...xN) a joint density for the N -dimensional
random variable. Sometimes we will write this as ρ(x). By definition, the probability
that the N−vector x lies in some subset A of RN is given by:

P [x ∈ A] =
∫

A
ρ(x) dx (6.35)

where dx refers to some N−dimensional volume element.

independence

We saw above that conditional probabilities were related to joint probabilities by

P (AB) = P (B|A)P (A) = P (A|B)P (B)

from which result Bayes theorem follows. The same result holds for random variables.
If a random variable X is independent of event Y , the probability of Y does not depend
on the probability of X. That is, P (x|y) = P (x) and P (y|x) = P (y). Hence for
independent events, P (x, y) = P (x)Py).

Once we have two random variables X and Y , with a joint probability P (x, y), we can
think of their moments. The joint n−m moment of X and Y about 0 is just

E[xnym] =
∫ ∫

xnymρ(x, y)dxdy. (6.36)

The 1-1 moment about zero is called the correlation of the two random variables:

ΓXY = E[xy] =
∫ ∫

xyρ(x, y)dxdy. (6.37)

On the other hand, the 1-1 moment about the means is called the covariance:

CXY = E[(x− E(x))(y − E(y)) = ΓXY − E[x]E[y]. (6.38)
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84 A Summary of Probability and Statistics

The covariance and the correlation measure how similar the two random variables are.
This similarity is distilled into a dimensionless number called the correlation coefficient:

r =
CXY
σXσY

(6.39)

where σX is the variance of X and σY is the variance of Y .

Using Schwarz’s inequality, namely that

∣∣∣∣
∫ ∫

f(x, y)g(x, y)dxdy
∣∣∣∣
2

≤
∫ ∫
|f(x, y)|2 dxdy

∫ ∫
|g(x, y)|2 dxdy (6.40)

and taking

f = (x− E(x))
√

(ρ(x, y))

and
g = (y − E(x))

√
(ρ(x, y))

it follows that
|CXY | ≤ σxσy. (6.41)

This proves that 0 ≤ r ≤ 1. A correlation coefficient of 1 means that the fluctuations in
X and Y are essentially identical. This is perfect correlation. A correlation coefficient
of -1 means that the fluctuations in X and Y are essentially identical but with the
opposite sign. This is perfect anticorrelation. A correlation coefficient of 0 means X
and Y are uncorrelated.

Two independent random variables are always uncorrelated. But dependent random
variables can be uncorrelated too.

Here is an example from [Goo00]. Let Θ be uniformly distributed on [−π/2, π/2]. Let
X = cos Θ and Y = sin Θ. Since knowledge of Y completely determines X, these two
random variables are clearly dependent. But

CXY =
1

π

∫ π/2

−π/2
cos θ sin θdθ = 0

.

marginal probabilities

From an n−dimensional joint distribution, we often wish to know the probability that
some subset of the variables take on certain values. These are called marginal proba-
bilities. For example, from ρ(x, y), we might wish to know the probability P (x ∈ I1).
To find this all we have to do is integrate out the contribution from y. In other words

P (x ∈ I1) =
1

π

∫

I1

∫ ∞

−∞
e−(x2+y2) dx dy. (6.42)
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covariances

The multidimensional generalization of the variance is the covariance. Let ρ(x) =
ρ(x1, x2, ...xn) be a joint probability density. The the i−j components of the covariance
matrix are defined to be:

Cij(m) =
∫

(xi −mi)(xj −mj)ρ(x) dx (6.43)

where m is the mean of the distribution

m =
∫

xρ(x) dx. (6.44)

Equivalently we could say that

C = E[(x−m)(x−m)T ]. (6.45)

From this definition it is obvious that C is a symmetric matrix. The diagonal ele-
ments of the covariance matrix are just the ordinary variances (squares of the standard
deviations) of the components:

Cii(m) = (σi)
2. (6.46)

The off-diagonal elements describe the dependence of pairs of components.

As a concrete example, the n-dimensional normalized gaussian distribution with mean
m and covariance C is given by

ρ(x) =
1

(2π detC)N/2
exp

[
−1

2
(x−m)TC−1(x−m)

]
. (6.47)

This result and many other analytic calculations involving multi-dimensional Gaussian
distributions can be found in [MGB74] and [Goo00].

An aside, diagonalizing the covariance

Since the covariance matrix is symmetric, we can always diagonalize it with an orthog-
onal transformation involving real eigenvalues. It we transform to principal coordinates
(i.e., rotate the coordinates using the diagonalizing orthogonal transformation) then the
covariance matrix becomes diagonal. So in these coordinates correlations vanish since
they are governed by the off-diagonal elements of the covariance matrix. But suppose
one or more of the eigenvalues is zero. This means that the standard deviation of that
parameter is zero; i.e., our knowledge of this parameter is certain. Another way to say
this is that one or more of the parameters is deterministically related to the others. This
is not a problem since we can always eliminate such parameters from the probabilistic
description of the problems. Finally, after diagonalizing C we can scale the parameters
by their respective standard deviations. In this new rotated, scaled coordinate system
the covariance matrix is just the identity. In this sense, we can assume in a theoretical
analysis that the covariance is the identity since in priciple we can arrange so that it is.
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6.5 Random Sequences

Often we are faced with a number of measurements {xi} that we want to use to estimate
the quantity being measured x. A seismometer recording ambient noise, for example,
is sampling the velocity or displacement as a function of time associated with some
piece of the earth. We don’t necessarily know the probability law associated with the
underlying random process, we only know its sampled values. Fortunately, measures
such as the mean and standard deviation computed from the sampled values converge
to the true mean and standard deviation of the random process.

The sample average or sample mean is defined to be

x̄ ≡ 1

N

N∑

i=1

xi

sample moments: Let x1, x2, ...xN be a random random sample from the probability
density ρ. Then the r-th sample moment about 0, is given by

1

N

N∑

i=1

xri .

If r = 1 this is the sample mean, x̄. Further, the r-th sample moment about x̄, is
given by

Mr ≡
1

N

N∑

i=1

(xi − x̄)r.

How is the sample mean x̄ related to the mean of the underlying random variable
(what we will shortly call the expectation, E[X])? This is the content of the law of
large numbers; here is one form due to Khintchine (see [Bru65] or [Par60]):

Theorem 9 Khintchine’s Theorem: If x̄ is the sample mean of a random sample of
size n from the population induced by a random variable x with mean µ, and if ε > 0
then:

P [‖x̄− µ‖ ≥ ε]→ 0 as n→∞.

In the technical language of probability the sample mean x̄ is said to converge in prob-
ability to the population mean µ. The sample mean is said to be an “estimator” of true
mean.

A related result is

Theorem 10 Chebyshev’s inequality: If a random variable X has finite mean x̄ and
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Figure 6.4: A normal distribution of zero mean and unit variance. Almost all the area
under this curve is contained within 3 standard deviations of the mean.

variance σ2, then [Par60]:

P [‖X − x̄‖ ≤ ε] ≥ 1− σ2

ε2

for any ε > 0.

This says that in order to make the probability of X being within ε of the mean greater
than some value p, we must choose ε at least as large as σ√

1−p . Another way to say this
would be: let p be the probability that x lies within a distance ε of the mean x̄. Then
Chebyshev’s inequality says that we must choose ε to be at least as large as σ√

1−p .

For example, if p = .95, then ε ≥ 4.47σ, while for p = .99, then ε ≥ 10σ. For the normal
probability, this inequality can be sharpened considerably: the 99% confidence interval
is ε = 2.58σ. But you can see this in the plot of the normal probability in Figure 6.4.
This is the standard normal probability (zero mean, unit variance). Clearly nearly all
the probability is within 3 standard deviations.

6.5.1 The Central Limit Theorem

The other basic theorem of probability which we need for interpreting real data is this:
the sum of a large number of independent, identically distributed random variables
(defined on page 21), all with finite means and variances, is approximately normally
distributed. This is called the central limit theorem, and has been known, more or
less, since the time of De Moivre in the early 18-th century. The term “central limit
theorem” was coined by George Polya in the 1920s. There are many forms of this result,
for proofs you should consult more advanced texts such as [Sin91] and [Bru65].
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Figure 6.5: Ouput from the coin-flipping program. The histograms show the outcomes
of a calculation simulating the repeated flipping of a fair coin. The histograms have
been normalized by the number of trials, so what we are actually plotting is the relative
probability of of flipping k heads out of 100. The central limit theorem guarantees that
this curve has a Gaussian shape, even though the underlying probability of the random
variable is not Gaussian.

Theorem 11 Central Limit Theorem: If x̄ is the sample mean of a sample of size n
from a population with mean µ and standard deviation σ, then for any real numbers a
and b with a < b

P

[
µ+

aσ√
n
< x̄ < µ+

bσ√
n

]
→ 1√

2π

∫ b

a
e−z

2/2dz.

This just says that the sample mean is approximately normally distributed.

Since the central limit theorem says nothing about the particular distribution involved,
it must apply to even something as apparently non-Gaussian as flipping a coin. Suppose
we flip a fair coin 100 times and record the number of heads which appear. Now, repeat
the experiment a large number of times, keeping track of how many times there were 0
heads, 1, 2, and so on up to 100 heads. Obviously if the coin is fair, we expect 50 heads
to be the peak of the resulting histogram. But what the central limit theorem says is
that the curve will be a Gaussian centered on 50.

This is illustrated in Figure 6.5 via a little code that flips coins for us. For comparison,
the exact probability of flipping precisely 50 heads is

100!

50!50!

(
1

2

)100

≈ .076. (6.48)

What is the relevance of the Central Limit Theorem to real data? Here are three
conflicting views quoted in [Bra90]. From Scarborough (1966): “The truth is that, for
the kinds of errors considered in this book (errors of measurement and observation),
the Normal Law is proved by experience. Several substitutes for this law have been
proposed, but none fits the facts as well as it does.”

From Press et al. (1986): “This infatuation [of statisticians with Gaussian statistics]
tended to focus interest away from the fact that, for real data, the normal distribution
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is often rather poorly realized, if it is realized at all.”

And perhaps the best summary of all, Gabriel Lippmann speaking to Henri Poincaré:
“Everybody believes the [normal law] of errors: the experimenters because they believe
that it can be proved by mathematics, and the mathematicians because they believe it
has been established by observation.”

6.6 Expectations and Variances

Notation: we use E[x] to denote the expectation of a random variable with respect to
its probability law f(x). Sometimes it is useful to write this as Ef [x] if we are dealing
with several probability laws at the same time.

If the probability is discrete then

E[x] =
∑

i

xif(xi).

If the probability is continuous then

E[x] =
∫ ∞

−∞
xf(x) dx.

Mixed probabilities (partly discrete, partly continuous) can be handled in a similar way
using Stieltjes integrals [Bar76].

We can also compute the expectation of functions of random variables:

E[φ(x)] =
∫ ∞

−∞
φ(x)f(x) dx.

It will be left as an exercise to show that the expectation of a constant a is a (E[a] = a)
and the expectation of a constant a times a random variable x is a times the expectation
of x (E[ax] = aE[x]).

Recall that the variance of x is defined to be

V (x) = E[(x− E(x))2] = E[(x− µ)2]

where µ = E[x].

Here is an important result for expectations: E[(x − µ)2] = E[x2] − µ2. The proof is
easy.

E[(x− µ)2] = E[x2 − 2xµ+ µ2] (6.49)

= E[x2]− 2µE[x] + µ2 (6.50)

= E[x2]− 2µ2 + µ2 (6.51)

= E[x2]− µ2 (6.52)
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An important result that we need is the variance of a sample mean. For this we use
the following lemma, the proof of which will be left as an exercise:

Lemma 1 If a is a real number and x a random variable, then V (ax) = a2V (x).

From this it follows immediately that

V (x̄) =
1

n2

n∑

i=1

V (xi).

In particular, if the random variables are identically distributed, with mean µ then
V (x̄) = σ2/n.

6.7 Bias

In statistics, the bias of an estimator of some parameter is defined to be the expectation
of the difference between the parameter and the estimator:

B[θ̂] ≡ E[θ̂ − θ] (6.53)

where θ̂ is the estimator of θ. In a sense, we want the bias to be small so that we have
a faithful estimate of the quantity of interest.

An estimator θ̂ of θ is unbiased if E[θ̂] = θ

For instance, it follows from the law of large numbers that the sample mean is an
unbiased estimator of the population mean. In symbols,

E[x̄] = µ. (6.54)

However, the sample variance

s2 ≡ 1

N

N∑

i=1

(xi − x̄)2 (6.55)

turns out not to be unbiased (except asymptotically) since E[s2] = n−1
n
σ2. To get an

unbiased estimator of the variance we use E[ n
n−1

s2]. To see this note that

s2 =
1

N

n∑

i=1

(xi − x̄)2 =
1

N

∑

i=1

x2
i − 2xix̄ + x̄2 =

(
1

N

n∑

i=1

x2
i

)
− x̄2.

Hence the expected value of s2 is

E[s2] =
1

N

n∑

i=1

E[x2
i ]− E[x̄2].

0



6.7 Bias 91

Using a previous result, for each of the identically distributed xi we have

E[x2
i ] = V (x) + E[x]2 = σ2 + µ2.

And

E[x̄2] = V (x̄) + E[x̄]2 =
1

n
σ2 + µ2.

So

E[s2] = σ2 + µ2 − 1

n
σ2 − µ2 =

n− 1

n
σ2.

Finally, there is the notion of the consistency of an estimator. An estimator θ̂ of θ is
consistent if for every ε > 0

P [|θ̂ − θ| < ε]→ 1 as n→∞.

Consistency just means that if the sample size is large enough, the estimator will be
close to the thing being estimated.

Later on, when we talk about inverse problems we will see that bias represents a po-
tentially significant component of the uncertainty in the results of the calculations.
Since the bias depends on something we do not know, the true value of the unknown
parameter, it will be necessary to use a priori information in order to estimate it.

Mean-squared error, bias and variance

The mean-squared error (MSE) for an estimator m of mT is defined to be

MSE(m) ≡ E[(m−mT )2] = E[m2 − 2mmT +m2
T ] = m̄2 − 2m̄mT +m2

T . (6.56)

By doing a similar analysis of the variance and bias we have:

Bias(m) ≡ E[m−mT ] = m̄−mT (6.57)

and
Var(m) ≡ E[(m− m̄)2] = E[m2 − 2mm̄+ m̄2] = m̄2 − m̄2. (6.58)

So you can see that we have: MSE = Var + Bias2. As you can see, for a given mean-
squared error, there is a trade-off between variance and bias. The following example
illustrates this trade-off.

Example: Estimating the derivative of a smooth function

We start with a simple example to illustrate the effects of noise and prior information in
the performance of an estimator. Later we will introduce tools from statistical decision
theory to study the performance of estimators given different types of prior information.
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Suppose we have noisy observations of a smooth function, f , at the equidistant points
a ≤ x1 ≤ . . . ≤ xn ≤ b

yi = f(xi) + εi, i = 1, ..., n, (6.59)

where the errors, εi, are assumed to be iid N(0, σ2)b. We want to use these observations
to estimate the derivative, f ′. We define the estimator

f̂ ′(xmi) =
yi+1 − yi

h
, (6.60)

where h is the distance between consecutive points, and xmi = (xi+1+xi)/2. To measure
the performance of the estimator (6.60) we use the mean square error (MSE), which is
the sum of the variance and squared bias. The variance and bias of (6.60) are

Var[f̂ ′(xmi)] =
Var(yi+1) + Var(yi)

h2
=

2σ2

h2
,

Bias[f̂ ′(xmi)] ≡ E[f̂ ′(xmi)− f ′(xmi)]

=
f(xi+1)− f(xi)

h
− f ′(xmi) = f ′(αi)− f ′(xmi),

for some αi ∈ [xi, xi+1] (by the mean value theorem) . We need some information on f ′

to assess the size of the bias. Let us assume that the second derivative is bounded on
[a, b] by M

|f ′′(x)| ≤M, x ∈ [a, b].

It then follows that

|Bias[f̂ ′(xmi)]| = |f ′(αi)− f ′(xmi)| = |f ′′(βi)(αi − βi)| ≤Mh,

for some βi between αi and xmi . As h→ 0 the variance goes to infinity while the bias
goes to zero. The MSE is bounded by

2σ2

h2
≤ MSE[f̂ ′(xmi)] = Var[f̂ ′(xmi)] + Bias[f̂ ′(xmi)]

2 ≤ 2σ2

h2
+M2h2. (6.61)

It is clear that choosing the smallest h possible does not lead to the best estimate;
the noise has to be taken into account. The lowest upper bound is obtained with

h = 21/4
√
σ/M . The larger the variance of the noise, the wider the spacing between

the points.

We have used a bound on the second derivative to bound the MSE. It is a fact that some
type of prior information, in addition to model (6.59), is required to bound derivative
uncertainties. Take any smooth function, g, which vanishes at the points x1, ..., xn.
Then, the function f̃ = f + g satisfies the same model as f , yet their derivatives could
be very different. For example, choose an integer, m, and define

g(x) = sin

[
2πm(x− x1)

h

]
.

bIndependent, identically distributed random variables, normally distributed with mean 0 and vari-
ance σ2.
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Then, f(xi) + g(xi) = f(xi) and

f̃ ′(x) = f ′(x) +
2πm

h
cos

[
2πm(x− x1)

h

]
.

By choosing m large enough, we can make the difference, f̃ ′(xmi) − f ′(xmi), as large
as we want; without prior information the derivative can not be estimated with finite
uncertainty.

6.8 Correlation of Sequences

Many people think that “random” and uncorrelated are the same thing. Random
sequences need not be uncorrelated. Correlation of sequences is measured by looking at
the correlation of the sequence with itself, the autocorrelation.c If this is approximately
a δ-function, then the sequence is uncorrelated. In a sense, this means that the sequence
does not resemble itself for any lag other than zero. But suppose we took a deterministic
function, such as sin(x), and added small (compared to 1) random perturbations to it.
The result would have the large-scale structure of sin(x) but with a lot of random junk
superimposed. The result is surely still random, even though it will not be uncorrelated.

If the autocorrelation is not a δ-function, then the sequence is correlated. Figure 6.6
shows two pseudo-random Gaussian sequences with approximately the same mean,
standard deviation and 1D distributions: they look rather different. In the middle of
this figure are shown the autocorrelations of these two sequences. Since the autocor-
relation of the right-hand sequence drops off to approximately zero in 10 samples, we
say the correlation length of this sequence is 10. In the special case that the autocorre-
lation of a sequence is an exponential function, the the correlation length is defined as
the (reciprocal) exponent of the best-fitting exponential curve. In other words, if the
autocorrelation can be fit with an exponential e−z/`, then the best-fitting value of ` is
the correlation length. If the autocorrelation is not an exponential, then the correlation
length is more difficult to define. We could say that it is the number of lags of the
autocorrelation within which the autocorrelation has most of its energy. It is often
impossible to define meaningful correlation lengths from real data.

A simple way to generate a correlated sequence is to take an uncorrelated one (this is
what pseudo-random number generators produce) and apply some operator that cor-
relates the samples. We could, for example, run a length-` smoothing filter over the
uncorrelated samples. The result would be a series with a correlation length approxi-
mately equal to `. A fancier approach would be to build an analytic covariance matrix
and impose it on an uncorrelated pseudo-random sample.

cFrom the convolution theorem, it follows that the autocorrelation is just the inverse Fourier trans-
form of the periodogram (absolute value squared of the Fourier transform).
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Figure 6.6: Two Gaussian sequences (top) with approximately the same mean, standard
deviation and 1D distributions, but which look very different. In the middle of this
figure are shown the autocorrelations of these two sequences. Question: suppose we
took the samples in one of these time series and sorted them in order of size. Would
this preserve the nice bell-shaped curve?
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6.8 Correlation of Sequences 95

For example, an exponential covariance matrix could be defined by Ci,j = σ2e−‖i−j‖/`

where σ2 is the (in this example) constant variance and ` is the correlation length.
To impose this correlation on an uncorrelated, Gaussian sequence, we do a Cholesky
decomposition of the covariance matrix and dot the lower triangular part into the
uncorrelated sequence [Par94]. If A is a symmetric matrix, then we can always write

A = LLT ,

where L is lower triangular [GvL83]. This is called the Cholesky decomposition of
the matrix A. You can think of the Cholesky decomposition as being somewhat like
the square root of the matrix. Now suppose we apply this to the covariance matrix
C = LLT . Let x be a mean zero pseudo-random vector whose covariance is the identity.
We will use L to transform x: z ≡ Lx. The covariance of z is given by

Cov(z) = E[zzT ] = E[(Lx)(Lx)T ] = LE[xxT ]LT = LILT = C

which is what we wanted.

Here is a simple Scilab code that builds an exponential covariance matrix Ci,j =
σ2e−‖i−j‖/l and then returns n pseudo-random samples drawn from a Gaussian pro-
cess with this covariance (and mean zero).

function [z] = correlatedgaussian(n,s,l)

// returns n samples of an exponentially correlated gaussian process

// with variance s^2 and correlation length l.

// first build the covariance matrix.

C = zeros(n,n);

for i = 1:n

for j = 1:n

C(i,j) = s^2 * exp(-abs(i-j)/l);

end

end

L = chol(C);

x = rand(n,1,’normal’);

z = L*x;

We would call this, for example, by:

z = correlatedgaussian(200,1,10);
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96 A Summary of Probability and Statistics

The vector z should now have a standard deviation of approximately 1 and a correlation
length of 10. To see the autocorrelation of the vector you could do:

plot(corr(z,200))

the autocorrelation function will be approximately exponential for short lags. For longer
lags you will see oscillatory departures from exponential behavior—even though the
samples are drawn from an analytic exponential covariance. This is due to the small
number of realizations. From the exponential part of the autocorrelation you can esti-
mate the correlation length by simply looking for the point at which the autocorrelation
has decayed by 1/e. Or you can fit the log of the autocorrelation with a straight line.

6.9 Random Fields

If we were to make N measurements of, say, the density of a substance, we could plot
these N data as a function of the sample number. This plot might look something
like the top left curve in Figure 6.6. But these are N measurements of the same thing,
unless we belive that the density of the sample is changing with time. So a histogram of
the measurements would approximate the probability density function of the parameter
and that would be the end of the story.

On the other hand, curves such as those in Figure 6.6 might result from measuring a
random, time-varying process. For instance, these might be measurements of a noisy
accelerometer, in which case the plot would be N samples of voltage versus time. But
then these would not be N measurements of the same parameter, rather they would
constitute a single measurement of a random function of time, sampled at N times.
The distinction we are making here is the distinction between a scalar-valued random
process and a random function. Now when we measure a function we always measure
it at a finite number of locations (in space or time). So our measurements of random
function result in finite-dimensional random vectors. This is why the sampling of a
time series of voltage, say, at N times, is really the realization of an N -dimensional
random process. For such a process it is not sufficient to simply make a histogram of
the samples. We need higher order characterizations of the probability law behind the
time-series in order to account for the correlations of the measured values. This is the
study of random fields or stochastic processes.

A real-data example of measurements of a random field is shown in Figure 6.7. These
traces represent 38 realizations of a time series recorded in a random medium. In this
case the randomness is spatial: each realization is made at a different location in the
medium. But you could easily imagine the same situation arising with a temporal
random process. For example, these could be measurements of wave propagation in a
medium undergoing random fluctuations in time, such as the ocean or the atmosphere.
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Figure 6.7: 38 realizations of an ultrasonic wave propagation experiment in a spatially
random medium. Each trace is one realization of an unknown random process U(t).

The study of random processes is both conceptually and notationally difficult. There
are advanced mathematical books such as Pugachev’s Theory of Random Functions
[Pug65] which explain the situation, but from a physical point of view, one of the
clearest explanations is in the book Statistical Optics by Goodman [Goo00]. We will
follow his lead.

So let us assume that there is an underlying random process U(t) (or U(r) if we want
to think about spatial randomness, it doesn’t matter for our purposes), the probability
law of which we do not know. The notation U(t) is used to represent the ensemble of all
possible outcomes of the random process along with their probabilities. Each outcome
would be a function of time, say u(t). It is as if t is an index and u labels the sample
description space of the random process.

If we don’t know the probability law of the random process, perhaps it is possible
to nevertheless characterize U by means, covariances, that sort of thing. Here is the
theorem, which you can find in [Pug65]. To completely characterize the probability law
of a stochastic process we must know the joint probability distribution

ρU(u1, u2, . . . , un, . . . ; t1, t2, . . . , tn, . . .)

for all n, where u1 = u(t1), etc. Of course, in practice, we only make measurements of
U at a finite numer of samples, so in practice we must make due with the n− th order
ρU .d Now, the first-order PDF (probability density function) is ρU (u; t). Knowing this

dIt is sometimes convenient to label the joint distribution by the random process, and sometimes
by the order. So,

ρU (u1, u2, . . . , un; t1, t2, . . . , tn) ≡ ρn(u1, u2, . . . , un; t1, t2, . . . , tn)
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we can compute E[u], E[u2], etc. The second-order PDF involves two times, t1 and t2,
and is the joint PDF of U(t1) and U(t2): ρ2(u1, u2; t1, t2). With this we can compute
quantities such as:

E[u1u2] =
∫ ∫

u1u2ρU (u1, u2; t1, t2)du1du2.

It is relatively uncommon to go beyond second order statistical characterizations (means
and covariances) and we will not do so in this class.

Time versus statistical autocorrelation

Given a known function u(t) (or this could be discrete samples of a known function
u(ti)), the time autocorrelation function of u is defined as:

Γ̃u(τ) = lim
T←∞

1

T

∫ T/2

−T/2
u(t+ τ)u(t)dt.

This measures the similarity of u(t+τ) and u(t) averaged over all time. Closely related
is the statistical autocorrelation function. Let U(t) be a random process. Implicity
the random process consistutes the set of all possible sample functions u(t) and their
associated probability measure.

Γu(t1, t2) ≡ E[u(t1)u(t2)] =
∫ ∞

−∞

∫ ∞

−∞
u2u1ρU(u1, u2; t1, t2)du1du2.

Γu(t1, t2) measures the statistical similarity of u(t1) and u(t2) over the ensemble of all
possible realizations of U(t).

For stationary processes, Γu(t1, t2) depends only on τ ≡ t2 − t1. And for ergodic
processes:

Γ̃(τ) = Γu(τ)

6.10 Probabilistic Information About Earth Models

In geophysics there is a large amount of a priori information that could be used to
influence inverse calculations. Here, a priori refers to the assumption that this infor-
mation is known independently of the data. Plausible geologic models can be based on
rock outcrops, models of sedimentological deposition, subsidence, etc. There are also
often in situ and laboratory measurements of rock properties that have a direct bearing
on macroscopic seismic observations, such as porosity, permeability, crack orientation,
etc. There are other, less quantitative, forms of information as well, the knowledge of
experts for instance.

This prior information can be deterministic or probabilistic. Examples of deterministic
information include: density is positive, wave velocity is positive (and less than the
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Figure 6.8: A black box for generating pseudo-random Earth models that agree with
our a priori information.

speed of light!), or that the mass of the planet is bounded above. Prior information
can also be probabilistic, as we have discussed from a Bayesian perspective since the
beginning of this course. In a later chapter we will treat problems with deterministic
information using non-Bayesian methods, but for now we will consider probabilistic
prior information.

There is a simple conceptual model that can be used to visualize the application of this
diverse a priori information. Suppose we have a black box into which we put all sorts
of information about our problem. We can turn a crank or push a button and out pops
a model that is consistent with whatever information that is put in, as illustrated in
Figure 6.8.

If this information consists of an expert’s belief that, say, a certain sand/shale sequence
is 90% likely to appear in a given location, then we must ensure that 90% of the models
generated by the black box have this particular sequence. One may repeat the process
indefinitely, producing a collection of models that have one thing in common: they are
all consistent with the information put into the black box.

Let us assume, for example, that a particular layered Earth description consists of
the normal-incidence P-wave reflection coefficient r at 1000 different depth locations
in some well-studied sedimentary basin. Suppose, further, that we know from in situ
measurements that r in this particular sedimentary basin almost never exceeds .1. What
does it mean for a model to be consistent with this information? We can push the button
on the black box and generate models which satisfy this requirement. Figure 6.9 shows
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Figure 6.9: Three models of reflectivity as a function of depth which are consistent with
the information that the absolute value of the reflection coefficient must be less than
.1. On the right is shown the histogram of values for each model. The top two models
are uncorrelated, while the bottom model has a correlation length of 15 samples.

some examples.

The three models shown satisfy the hard constraint that |r| ≤ .1 but they look com-
pletely different. In the case of the two Gaussian models, we know this is because they
have different correlation length. The real question is, which is most consistent with
our assumed prior information? What do we know about the correlation length in the
Earth? And how do we measure this consistency? If we make a histogram of the in situ
observations of r and it shows a nice bell-shaped curve, are we justified in assuming
a Gaussian prior distribution? On the other hand, if we do not have histograms of r
but only extreme values, so that all we really know is that |r| ≤ .1, are we justified in
thinking of this information probabilistically?

If we accept for the moment that our information is best described probabilistically, then
a plausible strategy for solving the inverse problem would be to generate a sequence of
models according to the prior information and see which ones fit the data. Assuming, of
course, that we know the probability function that governs the variations of the Earth’s
properties. In the case of the reflectivity sequence, imagine that we have surface seismic
data to be inverted. For each model generated by the black box, compute synthetic
seismograms, compare them to the data and decide whether they fit the data well
enough to be acceptable. If so, the models are saved; if not, they are rejected. Repeating
this procedure many times results in a collection of models that are, by definition, a
priori reasonable and fit the data. If the models in this collection all look alike, then
the features the models show are well-constrained by the combination of data fit and a
priori information. If, on the other hand, the models show a diversity of features, then
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Figure 6.10: The lognormal is a prototype for asymmetrical distributions. It arises
naturally when considering the product of a number of iid random variables. This
figure was generated from Equation 6.62 for s = 2.

these features cannot be well-resolved.

6.11 Other Common Analytic Distributions

Finally, we close this chapter by mentioning a few other commonly used analytic dis-
tributions. Nearly as important theoretically as the Gaussian, is the lognormal distri-
bution. A variable X is lognormally distributed if Y = ln(X) is normally distributed.
The central limit theorem treats the problem of sums of random variables; but the
product of exponentials is the exponential of the sum of the exponents. Therefore we
should expect that the lognormal would be important when dealing the a product of
iid e random variables. One of these distributions, sketched in Figure 6.10, is the pro-
totype of asymmetrical distributions. It also will play an important role later, when we
talk about so-called non-informative distributions. In fact, there is a whole family of
lognormal distributions given by

ρ(x) =
1

sx
√

2π
exp

[
− 1

2s2

(
log

x

x0

)2
]

(6.62)

where x0 plays the analog of the mean of the distribution and s governs the shape. For
small values of s (less than 1), the lognormal distribution is approximately gaussian.
While for large values of s (greater than about 2.5), the lognormal approches 1/x.
Figure 6.10 was computed for an s value of 2.

The Gaussian distribution is a member of a family of exponential distributions referred
to as generalized Gaussian distributions. Four of these distributions are shown in Fig-

eIndependent, Identically Distributed.
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Figure 6.11: The generalized Gaussian family of distributions.

ure 6.11 for p = 1, 2, 10, and ∞. The p = 1 distribution is called the Laplacian or
double-exponential, and the p =∞ distribution is uniform.

ρp(x) =
p1−1/p

2σpΓ(1/p)
exp

(
−1

p

|x− x0|p
(σp)p

)
(6.63)

where Γ is the Gamma function [MF53] and σp is a generalized measure of variance
known in the general case as the dispersion of the distribution:

(σp)
p ≡

∫ ∞

−∞
|x− x0|pρ(x) dx (6.64)

where x0 is the center of the distribution. See [Tar87] for more details.
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Exercises

1. Show that for any two events A and B

P (ABc) = P (A)− P (BA) (6.65)

2. Show that for any event A, P (Ac) = 1− P (A).

3. Show that 1/x is a measure, but not a probability density.

4. Show that the truth of the following formula for any two sets A and B

P (A ∪ B) = P (A) + P (B)− P (A ∪B) (6.66)

follows from the fact that for independent sets A′ and B′

P (A′ ∪ B′) = P (A′) + P (B′). (6.67)

Hint. The union of any two sets A and B can be written as the sum of three
independent sets of elements: the elements in A but not in B; the elements in B
but not in A; and the elements in both A and B.

5. Show that all the central moments of the normal distribution beyond the second
are either zero or can be written in terms of the mean and variance.

6. You have made n different measurements of the mass of an object. You want
to find the mass that best “fits” the data. Show that the mass estimator which
minimizes the sum of squared errors is given by the mean of the data, while the
mass estimator which minimizes the sum of the absolute values of the errors is
given by the median of the data. Feel free to assume that you have an odd number
of data.

7. Show that Equation 6.47 is normalized.

8. Take the n data you recorded above and put them in numerical order: x1 ≤ x2 ≤
... ≤ xn. Compute the sensitivity of the two different estimators, average and
median, to perturbations in xn.

What does this say about how least squares and least absolute values treat “out-
liers” in the data?

9. Find the normalization constant that will make

p(x) = e−(x2−x0x+x2
0) (6.68)

a probability density on the real line. x0 is a constant.

What are the mean and variance?
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Answer: The exponential integral is ubiquitous. You should remember the fol-
lowing trick.

H =
∫ ∞

−∞
e−x

2

dx

H2 =
[∫ ∞

−∞
e−x

2

dx
] [∫ ∞

−∞
e−y

2

dy
]

=
∫ ∞

−∞

∫ ∞

−∞
ex

2+y2

dx dy.

Therefore

H2 =
∫ ∞

0

∫ 2π

0
e−r

2

r dr dθ =
1

2

∫ ∞

0

∫ 2π

0
e−ρ dρ dθ = π

So H =
√
π

More complicated integrals, such as
∫ ∞

−∞
e−(x2−xx0+x2

0) dx

appearing in the homework are just variations on a theme. First complete the
square. So

e−(x2−xx0+x2
0) = e−(x−x0/2)2−3/4x2

0 .

And therefore
∫ ∞

−∞
e−(x2−xx0+x2

0) dx = e−3/4x2
0

∫ ∞

−∞
e−(x−x0/2)2

dx

= e−3/4x2
0

∫ ∞

−∞
e−z

2

dz =
√
πe−3/4x2

0 .

So the final result is that

ρ(x) =
1√
π
e3/4x2

0e−(x2−xx0+x2
0)

is a normalized probability.

Now compute the mean.

x̄ =
1√
π
e3/4x2

0

∫ ∞

−∞
xe−(x2−xx0+x2

0) dx.

But this is not as bad as it looks since once we complete the sqaure, most of the
normalization disappears

x̄ =
1√
π

∫ ∞

−∞
xe−(x−x0/2)2

dx.

Changing variables, we get

x̄ =
1√
π

∫ ∞

−∞
(x+ x0/2)e−x

2

dx

0
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=
1√
π

∫ ∞

−∞
xe−x

2

dx+
1√
π
x0/2

∫ ∞

−∞
e−x

2

dx.

The first integral is exactly zero, while the second (using our favorite formula) is
just x0/2, so x̄ = x0/2.

Similarly, to compute the variance we need to do

σ2 =
1√
π

∫ ∞

−∞
(x− x0/2)2e−(x−x0/2)2

dx =
1√
π

∫ ∞

−∞
z2e−z

2

dz.

Anticipating an integration by parts, we can write this integral as

−1

2

∫ ∞

−∞
zd
(
e−z

2
)

=
1

2

∫ ∞

−∞
e−z

2

dz =
1

2

√
π

using, once again, the exponential integral result. So the variance is just 1/2.

some common exponential integrals[Dwi61]

∫ ∞

0
e−r

2x2

dx =

√
π

2r
r > 0 throughout this box (6.69)

∫ ∞

0
xe−r

2x2

dx =
1

2r2
(6.70)

∫ ∞

0
x2a+1e−r

2x2

dx =
a!

2r2a+2
a = 1, 2, . . . (6.71)

∫ ∞

0
x2ae−r

2x2

dx =
1 · 3 · 5 · · · (2a− 1)

2a+1r2a+1

√
π a = 1, 2, . . . (6.72)

Normal probability integral ≡ 1√
2π

∫ x

−x
e−t

2/2dt = erf
x√
2

(6.73)

Error function ≡ erfx ≡ 2√
π

∫ x

0
e−t

2/2dt =
2x√
π

[
1− x2

1!3
+
x4

2!5
− x6

3!7
· · ·
]

(6.74)

erfx ≈ 1− e−x
2

x
√
π

[
1− 2!

1!(2x)2
+

4!

2!(2x)4
+

6!

3!(2x)6
· · ·
]

(6.75)

6.12 Computer Exercise

Write a program that computes the sample covariance matrix of repeated recordings of
a time series. To test your code, generate 25 correlated time series of length 100 and
use these as data. In other words the sample size will be 25 and the covariance matrix
will be of order 100.
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Chapter 7

Linear Inverse Problems With
Uncertain Data

In Chapter 5 we showed that the SVD could be used to solve a linear inverse problem in
which the only uncertainties were associated with the data. The canonical formulation
of such a problem is

d = Am + ε (7.1)

where it is assumed that the forward operator A is linear and exactly known and
that the uncertainties arise from additive noise in the data. In most geophysical inverse
problems, the vector m is properly defined in an infinite dimensional space of functions;
for example, the elastic tensor as a function of space. As a practical matter the model
space is usually discretized so that the problem is numerically finite dimensional. This is
a potential source of error (bias, discretization error), but for now we will ignore this and
assume that the discretization is very fine, but nevertheless finite. This is equivalent to
assuming a priori that the true Earth model is confined to a finite dimensional subspace
of the model space.

If there are no discretization errors, and if the forward model is linear and known,
then the observations d are the response of the true model mT under the action of A,
provided there are no measurement or other systematic errors.

As defined in Section 6.5 m† is a pseudo-inverse estimator of the true model: the
generalized solution of Equation 7.1 is given by m† = A†d. Since d is the response of
the true model, mtrue, it follows that

m† ≡ A†d = A†(Amtrue + ε) = A†Amtrue + A†ε.

In terms of the SVD, the resolution matrix A†A can be written VrV
T
r and so represents

a projection operator onto the non-null space of the forward problem (i.e., the row
space). Since none of the columns of Vr lie in the null space of A, the net result of this

1



108 Linear Inverse Problems With Uncertain Data

is that A†A can have no component in the null space. So, apart from the noise, the
matrix A†A acts as a filter through which we see the Earth.

We proved in Section 4.9 that a projection operator onto the null space is

V0V
T

0 = I − V T
r V

T
r (7.2)

and therefore

(A†A− I)mT = − [mT]null . (7.3)

The null space components of the true model have a special statistical significance. In
statistics, the bias of an estimator of some parameter is defined to be the expectation
of the difference between the parameter and the estimator (see Section 6.7):

B[θ̂] ≡ E[θ̂ − θ] (7.4)

where θ̂ is the estimator of θ. In a sense, we want the bias to be small so that we have
a faithful estimate of the quantity of interest. For instance, it follows from the linearity
of the expectation that the sample mean x̄ is an unbiased estimator of the population
mean µ:

E[x̄] = µ (7.5)

and hence E[x̄− µ] = 0.

Using the previous result we can see that the bias of the generalized inverse solution as
an estimator of the true earth model is just (minus) the projection of the true model
onto the null space of the forward problem:

B(m†) ≡ E[m† −mtrue]

= E[A†d−mtrue]

= E[A†Amtrue + A†ε−mtrue]

=
(
A†A− I

)
E[mtrue] + A†E[ε] (7.6)

and so, assuming that the noise is zero mean (E[ε] = 0), we can see that the bias is
simply the projection of the true model’s expected value onto the null-space. If we
assume that the true model is non-random, then E[mtrue] = mtrue. The net result is
that the bias associated with the generalized inverse solution is the component of the
true model in the null space of the forward problem. Inverse problems with no null-space
are automatically unbiased. But the existence of a null-space does not automatically
lead to bias since the true model could be orthogonal to the null-space. If the expected
value of the true model is a constant, then this orthogonality is equivalent to having the
row sums of the matrix A†A− I be zero. In fact, the requirement that the row sums of
this matrix be zero is sometimes stated as the definition of unbiasedness [OP95], but as
we have just seen, such a definition would, in general, be inconsistent with the standard
statistical use of this term.
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7.0.1 Model Covariances

Estimators are functions of the data and therefore random variables. The covariance
of a random variable x is the second central moment:

C = E[(x− E[x])(x− E[x])T ]. (7.7)

The covariance of the generalized inverse estimate m† ≡ A†d is easy to compute. First
realize that if d has zero mean than so does m† a and therefore assuming zero mean
errors

Cov(m̂) = E[m†m†
T

] = A†Cov(d)A†
T

(7.8)

If the data are uncorrelated, then Cov(d) is a diagonal matrix whose elements are the
standard deviations of the data. If we go one step further and assume that all these
standard deviations are the same, σ2

d,
b then the covariance of the generalized inverse

estimate takes on an especially simple form:

Cov(m†) = σ2
dA
†A† = σ2

dVrΛ
−2
r V T

r .

We can see that the uncertainties in the estimated model parameters (expressed as
Cov(δm†)) are proportional to the data uncertainties and inversely proportional to
the squared singular values. This is as one would expect: as the noise increases, the
uncertainty in our parameter estimates increases; and further, the parameters associated
with the smallest singular values will be less well resolved than those associated with
the largest.

7.1 The World’s Second Smallest Inverse Problem

Suppose we wanted to use sound to discover the depth to bedrock below our feet. We
could set off a loud bang at the surface and wait to see how long it would take for the
echo from the top of the bedrock to return to the surface. Then, assuming that the
geologic layers are horizontal, can we compute the depth to bedrock z from the travel
time of the reflected bang t? Suppose we do not know the speed with which sounds
propagates beneath us, so that all we can say is that the travel time must depend both
on this speed and on the unknown depth

t = 2z/c.

Since this toy problem involves many of the complications of more realistic inverse
calculations, it will be useful to go through the steps of setting up and solving the
calculation. We can absorb the factor of two into a new sound speed c and write

t = z/c. (7.9)

aWhy? since m† = A†, E[m†] = A†E[d].
bI.e., assume that the data are iid with mean zero and standard deviation σd.
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So the model vector m is (z, c) since c and z are both unknown, and the data vector d
is simply t. The forward problem is g(m) = z/c. Notice that g is linear in depth, but
nonlinear in sound speed c. We can linearize the forward problem by doing a Taylor
series expansion about some model (z0, c0) and retaining only the first order term:

t = t0 +
z0

c0

[
1

z0
,− 1

c0

] [
δz
δc

]
(7.10)

where t0 = z0/c0. Pulling the t0 over to the left side and diving by t0 we have

δt

t0
= [1,−1]

[
δz
z0
δc
c0

]
(7.11)

In this particular case the linearization is independent of the starting model (z0, c0)
since by computing the total derivative of of t we get

δt

t
=
δz

z
− δc

c
. (7.12)

In other words, by defining new parameters to be the logarithms of the old parameters,
or the dimensionless perturbations, (but keeping the same symbols for convenience) we
have

t = z − c. (7.13)

In any case, the linear(-ized) forward operator is the 1× 2 matrix A = (1,−1) and

ATA =

[
1 −1
−1 1

]
. (7.14)

Let’s work out the SVD of A by hand. First, let us make the convention that model
vectors and data vectors are column vectors. We could make them row vectors too, but
we must keep to some convention in order to avoid getting confused. So

The forward operator matrix A must be a 1 by 2 matrix

A = [1 − 1]

since d ∈ R1 and m ∈ R2. Therefore

ATA =

[
1
−1

]
[1 − 1] =

[
1 −1
−1 1

]

and

AAT = [1 − 1]

[
1
−1

]
= 2.

So the eigenvalue of a 1 × 1 matrix (a scalar) is just this number. The eigenvalues of
AAT are the squares of the singular values, so the one and only non-zero singular value
is
√

2.
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Now since the data space is one-dimensional, the data-space eigenvector is just a nor-
malized vector in R1–which is just 1. So Ur = 1. To get Vr we don’t even need ATA
since we know that

ATUr = VrΛr.

So [
1
−1

]
· 1 =

√
2Vr ⇒ Vr =

1√
2

[
1
−1

]
.

The complete SVD then is

A = 1 ·
√

2 · 1√
2

[
1
−1

]T
= 1 ·

√
2 · 1√

2
[1 − 1] .

where Ur = 1, Λr =
√

2, and Vr = 1/
√

2[1 − 1]T .

So, the eigenvalues of ATA are 2 and 0. 2 is the eigenvalue of the (unnormalized)
eigenvector (1,−1)T , while 0 is the eigenvalue of (1, 1)T . The latter follows from the
fact that AV0 = 0 so

[1 − 1]

[
v0

v1

]
= 0⇒ V0 =

[
1
1

]

This has a simple physical interpretation. An out-of-phase perturbation of velocity
and depth (increase one and decrease the other) changes the travel time, while an in
phase perturbation (increase both) does not. Since an in phase perturbation must be
proportional to (1, 1)T , it stands to reason that this vector would be in the null space
of A. But notice that we have made this physical argument without reference to the
linearized (log parameter) problem. However, since we spoke in terms of perturbations
to the model, the assumption of a linear problem was implicit. In other words, by
thinking of the physics of the problem we were able to guess the singular vectors of the
linearized problem without even considering the linearization explicitly.

In the notation we developed for the SVD, we can say that Vr, the matrix of non-null-
space model singular vectors is (1,−1)T , while V0, the matrix of null-space singular
vectors is (1, 1)T . And hence, using the normalized singular vectors, the resolution
operator is

VrV
T
r =

1√
2

[
1 −1
−1 1

]
. (7.15)

The covariance matrix of the depth/velocity model is

A†Cov(d)A†T = σ2A†A†T (7.16)

assuming the single travel time datum has normally distributed error. Hence the co-
variance matrix is

Cov(m) =
(
σ

2

)2
[

1 −1
−1 1

]
. (7.17)
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The important thing to notice here is that this says the velocity and depth are com-
pletely correlated (off diagonal entries magnitude equal to 1), and that the correlation
is negative. This means that increasing one is the same as decreasing the other. The
covariance matrix itself has the following eigenvalue/eigenvector decomposition.

Cov(m) =
(
σ

2

)2
[

1 1
−1 1

] [
1 0
0 0

] [
1 −1
1 1

]
. (7.18)

These orthogonal matrices correspond to rotations of the velocity/depth axes. These
axes are associated with the line z/c = t. So for a given travel time t, we can be
anywhere on the line z = tc: there is complete uncertainty in model space along this
line and this uncertainty is reflected in the zero eigenvalue of the covariance matrix.

For a two-dimensional problem such as this the correlation coefficient measures the sim-
ilarity in the fluctuations in the two random variables. Here the two random variables
are our estimates of z and c. Formally the correlation coefficient is defined to be:

r =
Czc
σzσc

.

Since the covariance matrix is symmetric Czc = Ccz. σz and σc are just the standard
deviations of the corresponding parameter estimates: σz =

√
Czz and σc =

√
Ccc. So

r =
−1

1
.

It is not hard to show that for a two-dimensional Gaussian probability density, the
level surfaces (contours of constant probability) are ellipses (circles and lines being
special cases of ellipses). If the two random variables are zero-mean and have the same
variances, then the level surfaces fall into one of three classes depending on the size
of the correlation coefficient. First note that the correlation coefficient is always less
than or equal to one in absolute value. If r = 0 then the level surfaces are circles. If
0 < |r| < 1, then the level surfaces are true ellipses. Finally, if |r| = 1 the level surfaces
are lines, as in the example above.

7.1.1 The Damped Least Squares Problem

The generalized inverse solution of the two-parameter problem is

m† = A†t =
t

2

[
1
−1

]
. (7.19)

As we have seen before, least squares tends to want to average over ignorance. Since
we cannot determine velocity and depth individually, but only their ratio, least squares
puts half the data into each. Damping does not change this, it is still least squares, but
it does change the magnitude of the computed solution. Since damping penalizes the
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norm of the solution, we can take an educated guess that the damped solution should,
for large values of the damping parameter λ, tend to

t

λ

[
1
−1

]
. (7.20)

For small values of λ, the damped solution must tend to the already computed gener-
alized inverse solution. It will be shown shortly that the damped generalized inverse
solution is

m†λ =
t

λ+ 2

[
1
−1

]
. (7.21)

Exact Solution

The damped least squares estimator satisfies

(ATA+ λI)mλ = ATd.

Since the matrix on the left is by construction invertible, we have

m†λ = (ATA + λI)−1ATd.

If

ATA =

[
1 −1
−1 1

]

then

(ATA+ λI)−1 =
1

(2 + λ)λ

[
1 + λ 1

1 1 + λ

]
.

So the exact damped least squares solution is

m†λ =
1

(2 + λ)λ

[
1 + λ 1

1 1 + λ

] [
1
−1

]
t =

t

λ+ 2

[
1
−1

]
.

Damping changes the covariance structure of the problem too. We will not bother
deriving a analytic expression for the damped covariance matrix, but a few cases will
serve to illustrate the main idea. The damped problem [ATA + λI]m = ATd, is
equivalent to the ordinary normal equations for the augmented matrix

Aλ ≡
[

A√
λI

]
(7.22)

where A is the original matrix and I is an identity matrix of dimension equal to the
number of columns of A. In our toy problem this is

Aλ ≡




1 −1√
λ 0

0
√
λ


 . (7.23)
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The covariance matrix for the augmented system is

Cov(m) = A†λCov(d)A†Tλ . (7.24)

For example, with λ = 1 the velocity/depth covariance is

Cov(z, c) =
σ2

3

[
2 1
1 2

]
. (7.25)

Right away we can see that since the eigenvalues of this matrix are 1 and 3, instead of
a degenerate ellipsoid (infinite aspect ratio), the error ellipsoid of the damped problem
has an aspect ratio of 3. As the damping increases, the covariance matrix becomes
increasingly diagonal, resulting in a circular error ellipsoid. You will calculate the
analytic result as an exercise. Your result should become degenerate as λ→ 0.

Exercises

• Extend the two-parameter travel time inversion problem to the case in which
the ray reflects from the flat interface at an angle of θ, measured relative to the
vertical. I.e, θ = 0 would correspond to a ray that goes straight up and down.
Assume that the travel time can be measured with an uncertainty of σ second.

• Compute the pseudoinverse and resolution matrix of
(

1 −1 2 0
4 −4 0 0

)

Assuming the right hand side is (0, 1)T , what is the least squares estimator of the
4-dimensional model vector.

• Compute the pseudoinverse and resolution matrix of




1. −1
4 −4
0 1
0 −1




Assuming the right hand side is (0, 1,−1, 0)T , what is the least squares estimator
of the 4-dimensional model vector.

• Assuming the data covariance matrix is




1 0 0 0
0 .5 0 0
0 0 .1 0
0 0 0 .0001




compute the covariance of matrix of the least squares estimator.
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• Find the inverse of the covariance matrix in Equation 7.25. Now see if you can
find the square root of this matrix. I.e., a matrix such that when you square it,
you get the inverse of the covariance matrix.

• Compute the exact covariance and resolution for the damped two-parameter prob-
lem.
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Chapter 8

Examples: Absorption and Travel
Time Tomography

Before we go any further, it will be useful to motivate all the work we’re doing with an
example that is sufficiently simple that we can do all the calculations without too much
stress. We will consider and example of “tomography”. The word tomography comes
from the Greek tomos meaning section or slice. The idea is to use observed values of
some quantity which is related via a line integral to the physical parameter we wish to
infer. Here we will study seismic travel time tomography, is is a widely used method of
imaging the earth’s interior. Mathematically this problem is identical to other types of
tomography such as used in X-ray CAT scans.

8.1 The X-ray Absorber

Most of the examples shown here are based on an idealized two-dimensional x-ray
absorption experiment. This experiment consists of the measurement of the power loss
of x-ray beams passing through a domain filled with an x-ray absorber.

We suppose that the absorber is confined to the unit square,

(x, y) ∈ [0, 1] ⊗ [0, 1];

we will represent this domain by DX. We also suppose that the sensing beam follows
a perfectly straight path from transmitter to receiver and that the transmitter and
receiver are located on the perimeter of the unit square. The geometry of a single x-ray
absorption measurement looks like Figure 8.1.
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transmitter

receiver

Figure 8.1: An x-ray source shoots x-rays across a target to a detector where the
intensity (energy) of the beam is measured.

8.1.1 The Forward Problem

Let c(x, y) be the absorption coefficient in DX; we assume that c(x, y) is non-negative
everywhere. Let IT be the emitted beam intensity from a transmitter, T ; and let IR be
the received intensity at some receiver, R. Then the absorption law is exactly

IR = IT e
−
∫ T
R
c(x,y)dλ (8.1)

where the integral is along the (perfectly straight) path from T to R and dλ is arc-length
along the path. (Note that c(x, y) = 0 in a vacuum and the exponent in equation (8.1)
vanishes.)

It is convenient to replace intensities with

ρ =
IT − IR

IT
, (8.2)

which is just the fractional intensity drop. ρ has the virtues that

• ρ is independent of transmitter strength, IT ,

• ρ = 0 for a beam which passes only through a vacuum,

• ρ ≥ 0 for all reasonable mediaa and, in fact, 0 ≤ ρ < 1, if c(x, y) is everywhere
non-negative and finite.

aA “reasonable” medium is one which does not add energy to beams passing through. A laser is
not a reasonable medium.
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8.1 The X-ray Absorber 119

For our uses, we will need two types of absorption calculations:

exact We will want an exact calculation which we can use to generate synthetic data to
test our inverse algorithms. This calculation mimics the data generation process
in nature. This calculation should either be exact or at least much more accu-
rate than the associated linearized calculation (if we wish to study uncertainties
and ambiguities in the inverse process, rather than errors in the synthetic data
generator).

linear We will also want a calculation in which the relation between a model’s param-
eters and the observations predicted for that model is linear. The precise linear
relationship will form the heart of a linear inverse calculation.

The difference between these two calculations is a measure of the problem’s non-
linearity. The next few subsections describe these two calculations in more detail.

Exact Absorption

Let ρexact be the exact absorption calculation. We can think of ρexact(c;T,R) as a
computer program to which is given the transmitter and receiver locations and the
function c(x, y) which defines the absorption coefficient everywhere inDX. This program
then returns the fractional intensity drop for the path TR through the medium c(x, y).

The calculation itself is quite straightforward. In an actual application we would have
to specify the accuracy with which the quadrature along the ray path is performed. In
the calculations discussed here, we performed the quadrature by dividing the ray path
into segments of a fixed length and then summing the contribution to the integral from
each tiny segment. We took the segment length to be about 10−3; recall that the sides
of the model are of unit length.

8.1.2 Linear Absorption

A simple way to linearize the exact calculation, equation (8.1), is to assume that the
path integral, ∫ T

R
c(x, y)dλ

is small. Since ex ≈ 1 + x for small x, we have

IR ≈ IT

(
1−

∫ T

R
c(x, y)dλ

)

or

ρlinear ≈
∫ T

R
c(x, y)dλ (8.3)
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Figure 8.2: The fractional error of the linearized absorption as a function of ρexact.

This result is a good approximation to the extent that the total relative absorption is
much less than one.

An exact linearization can be had by changing the observable quantity from ρ to
log(IR/IT ). Simply involves taking the logarithm of equation 8.1 leads to

log(IR/IT ) = −
∫ T

R
c(x, y)dλ

which assures us that the logarithms of the observed intensities are exactly linear in
the absorption coefficient distribution (c(x, y)). We chose the approximate form, (8.3),
when we developed the examples in order to induce some non-linearity into the calcu-
lation.

Linearization Errors

It is very easy to compute the errors due to linearization in this case, since ρexact can
be easily related to ρlinear as

ρexact = 1− e−ρlinear .

A plot of the fractional error of the linearized absorption,

ρlinear − ρexact
ρexact

as a function of ρexact is shown in Figure 8.2
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Figure 8.3: Geometry of the tomography problem. The model is specified by blocks of
constant absorption.

Notice that the error expressed as a fraction is of the same order as the fractional
absorption (ρexact). (For example, when ρexact = 0.5, error ≈ 40%.) In a rough sense,
if we think of linearization as neglecting a quadratic term which has about the same
coefficient as the linear term we are retaining, then we should expect an error of the
same order as the quantity which has been linearized. Although this property is so
simple as to be self-evident, it almost always comes as an ugly surprise in any particular
application.

8.1.3 Model Representation

All of our inverse calculations use a model consisting of a regular array of homogeneous
rectangular blocks. We completely specify a model’s geometry by specifying the number
of blocks along the x-axis (Nx) and the number of blocks along the y-axis (Ny). We
completely specify a model by specifying its geometry and by specifying the NxNy

constant absorptivities of the blocks.

The geometry of a model with Nx = 4, Ny = 5 is shown in Figure 8.3.

We will need to map the cells in a model onto the set of integers {1, . . . NxNy}. Let
C11 be the upper-left corner, CNx1 be the upper-right corner, and let CNxNy be the
lower-right corner. The matrix {Cij} is mapped onto the vector {mk} a row at a time,
starting with the first (lowermost) row:

{mi} = {C11, . . . CNx1, C1,2 . . . CNxNy}

We chose this representation because it is very simple (possibly too simple for some
applications) and it is strongly local. The latter property simply means that a perturba-
tion in a model parameter only changes the values of c(x, y) in a limited neighborhood.
Strong locality makes some results quite a bit easier to interpret; the trade-off is that
locality is always associated with discontinuities in the representation’s derivatives.
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Figure 8.4: A perspective view of the model.

Model Sensitivity Vector

Let TR be the path joining a given transmitter-receiver pair, and let m be an absorption
model, a vector of length NxNy. We want to find a vector, q(TR), a function of the
path TR and of dimension NxNy, such that

ρlinear(m;T,R) = q(TR) ·m. (8.4)

It is easy to see, by inspection of (8.3), that qi is simply the length of the portion of
the path TR that passes through the ith block.

Notice that the components of q depend only upon the model representation and the
path TR. In particular, they are independent of the absorptivities.

8.1.4 Some Numerical Results

A perspective view of a model consisting of a centered disc of radius 0.25 is shown in
Figure 8.4. inside the disc the absorption coefficient is 0.1 and outside of the disc it
vanishes.

We sent nine shots through this structure. All of the shots came from a common
transmitter in the upper-left corner and went to receivers spread along the right-hand
side. The model and shot geometry looks like Figure 8.5.

Figure 8.6 shows the computed values of ρexact as a function of receiver elevation.

The numerical value of the extinction for the lowermost ray was 0.048757. This ray
traveled from the point (0, 0.9), the transmitter, to (1, 0.1), the receiver. The value of
the integrated absorptivities along the path, the path integral in equation (8.1), should
have been exactly 0.05 (as a little contemplation should show). From this we compute
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Figure 8.5: The model and shot geometry.
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Figure 8.7: Plan view of the model showing one source and five receivers.

ρtrue = 0.048771, which is in satisfactory agreement. (Note that the linearized estimate
is exactly 0.05 and it is about 1% high.)

8.2 Travel Time Tomography

Along the same lines as the x-ray absorption problem, the time-of-flight of a wave
propagating through a medium with wavespeed v(x, y, z) is given by the line integral
along the ray of the reciprocal wavespeed (slowness or index of refraction)

∫

v(x,y,z)

dλ

v(x, y, z)
.

The problem is to infer the unknown wavespeed of the medium from repeated obser-
vations of the time-of-flight for various transmitter/detector locations. For the sake
of definiteness, let’s suppose that the source emits pressure pulses, the receiver is a
hydrophone, and the medium is a fluid.

Figure (8.7) shows a 2D model of an anomaly embedded in a homogeneous medium.
Also shown are 5 hypothetical rays between a source and 5 detectors. This is an idealized
view on two counts. The first is that not only is the raypath unknown–rays refract–but
the raypath depends on the unknown wavespeed. This is what makes the travel time
inversion problem nonlinear. On the other hand, if we can neglect the refraction of the
ray, then the problem of determining the wavespeed from travel time observations is
completely linear.
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8.3 Computer Example: Cross-well tomography 125

The second complicating factor is that a “travel time” is only unambiguously defined at
asymptotically high frequencies. In general, we could define the travel time in various
ways: first recorded energy above a threshold, first peak after the threshold value is
surpassed, and others. Further, the travel times themselves must be inferred from the
recorded data, although it is possible in some cases that this can be done automatically;
perhaps by using a triggering mechanism which records a time whenever some threshold
of activity is crossed.

For purposes of this example, we will neglect both of these difficulties. We will compute
the travel times as if we were dealing with an infinite frequency (perfectly localized)
pulse, and we will assume straight ray propagation. The first assumption is made in
most travel time inversion calculations since there is no easy way around the difficulty
without invoking a more elaborate theory of wave propagation. The second assumption,
that of linearity, is easily avoided in practice by numerically tracing rays through the
approximate medium. But we won’t worry about this now.

8.3 Computer Example: Cross-well tomography

In the code directory you will find various implementations of straight-ray tomography.
These are extensive codes and will not be described in detail here. They begin by
setting up the source/receiver geometry of the problem, computing a Jacobian matrix
and fake travel times, adding noise to these and doing the least squares problem via
SVD. Here we just show some of the results that you will be able to get.

In Figure (8.8) you see a plot of the Jacobian matrix itself. The i − j element of this
matrix is the length the i-th ray travels in the j-th cell. This comes from discretizing
the travel time integral (t =

∫
s(r)d`) along each ray (one for each travel time). Black

indicates zero elements and white nonzero. This particular matrix is about 95% sparse,
so until we take advantage of this fact, we’ll be doing a lot of redundant operations,
e.g., 0× 0 = 0.

Below this we show the “hit count”. This is the summation of the ray segments within
each cell of the model and represents the total “illumination” of each cell.

Below this we show the exact model whose features we will attempt to reconstruct via
a linear inversion.

Finally, before we can do an inversion, we need some data to invert. First we’ll compute
the travel times in the true model shown above, then we’ll compute the travel times
through a background model which is presumed to be correct except for the absence of
the anomaly. It’s the difference between these two that we take to be the right hand
side of the linear system

Jδm = δd

relating model perturbations to data perturbations. The computed solutions are shown
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Figure 8.8: Jacobian matrix for a cross hole tomography experiment involving 25× 25
rays and 20×20 cells (top). Black indicates zeros in the matrix and white nonzeros. Cell
hit count (middle). White indicates a high total ray length per cell. The exact model
used in the calculation (bottom). Starting with a model having a constant wavespeed
of 1, the task is to image the perturbation in the center.
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in Figure 8.9.

Finally, in Figure (8.10), we show the spectrum of singular values present in the jacobian
matrix, and one well resolved and one poorly resolved model singular vectors. Note
well that in the cross hole situation, vertically stratified features are well resolved while
horizontally stratified features are poorly resolved. Imagine the limiting case of purely
horizontal rays. A v(z) model would be perfectly well resolved, but a v(x) model would
be completely ambiguous.
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Figure 8.9: SVD reconstructed solutions. Using the first 10 singular values (top).
Using the first 50 (middle). Using all the singular values above the machine precision
(bottom).
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Figure 8.10: The distribution of singular values (top). A well resolved model singular
vector (middle) and a poorly resolved singular vector (bottom). In this cross well
experiment, the rays travel from left to right across the figure. Thus, features which
vary with depth are well resolved, while features which vary with the horizontal distance
are poorly resolved.
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Chapter 9

From Bayes to Weighted Least
Squares

In the last chapters we have developed the theory of least squares estimators for linear
inverse problems in which the only uncertainty was the random errors in the data. Now
we return to our earlier discussion of Bayes theorem and show how within the Bayesian
strategy we can incorporate prior information on model parameters and still get away
with solving weighted least squares calculations.

Denote by f(m,d) the joint distribution on models and data. Recall that from Bayes’
theorem, the conditional probability on m given d is

p(m|d) =
f(d|m)ρ(m)

h(d)
,

where f(d|m) measures how well a model fits the data, ρ(m) is the prior model distri-
bution, and h(d) is the marginal density of d. The conditional probability p(m|d) is
the so-called Bayesian posterior probability, expressing the idea that p(m|d) assimilates
the data and prior information.

For now we will assume that all uncertainties (model and data) can be described by
Gaussian distributions. Since any Gaussian distribution can be characterized by its
mean and covariance, this means that we must specify a mean and covariance for both
the a priori distribution and the data uncertainties.

In this case the Bayesian posterior probability is the normalized product of the following
two functions:

√
(2π)−n

detCD
exp

[
−1

2
(g(m)− dobs)TC−1

D (g(m)− dobs)
]
,

(9.1)

where dobs is the vector of observed data which dimension is n, CD is the data covari-
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ance matrix and g(m) is the forward operator; and

√
(2π)−m

detCM
exp

[
−1

2
(m−mprior)TC−1

M (m−mprior)
]
,

(9.2)

where m is the number of model parameters and CM is the covariance matrix describing
the distribution of models about the prior model mprior. If the forward operator is
linear, then the posterior distribution is itself a Gaussian. If the forward operator is
nonlinear, then the posterior is non-Gaussian.

The physical interpretation of Equation 9.1 is that it represents the probability that a
given model predicts the data. Remember that

d = g(mtrue) + e

where e is the noise. If we take expectations of both sides then

E[d] = g(mtrue) + E[e].

So if the errors are zero mean then the true model predicts the mean of the data. Of
course, we don’t know the true model, but if we have an estimate of it, say m then
g(m) is an estimate of the mean of the data and d− g(m) is an estimate of e.

If we want to estimate the true model we still have the problem of defining what sort
of estimator we want to use. Maybe this is not what we want. It may suffice to find
regions in model space which have a high probability, as measured by the posterior.
But for now let’s consider the problem of estimating the true model. A reasonable
choice turns out to be: look for the mean of the posterior.a If the forward operator is
linear (so that g(m) = Gm for some matrix G), then Tarantola [Tar87] shows that the
normalized product

σ(m) ∝ exp−1

2

[
(Gm− dobs)

TC−1
D (Gm− dobs)

+ (m−mprior)
TC−1

M (m−mprior)
]
. (9.3)

can be written as

σ(m) ∝ exp
[
(m−mmap)TC−1

M ′(m−mmap)
]
, (9.4)

where

CM ′ =
[
GTC−1

D G+ C−1
M

]−1
, (9.5)

is the covariance matrix of the posterior probability. This is approximately true even
when g is nonlinear, provided it’s not too nonlinear.

aWe will take up the reasonableness of this choice later.
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Here mmap is the maximum of the posterior distribution, which for a Gaussian is also
the mean. So to find our estimator we need to optimize Equation 9.3. But that is
equivalent to minimizing the exponent:

min
m

[
(Gm− dobs)

TC−1
D (Gm− dobs) + (m−mprior)

TC−1
M (m−mprior)

]
. (9.6)

But this is nothing but a weighted least squares problem. This is even easier to see if
we introduce the square roots of the covariance matrices. Then the first term above is

(
(C
−1/2
D )T (Gm− dobs), C

−1/2
D (Gm− dobs)

)
= ‖C−1/2

D (Gm− dobs)‖2

while the second term is
‖C−1/2

M (m−mprior)‖2.

Here we have used two important facts. This first is that the inverse of a symmetric
matrix is symmetric. The second is that every symmetric matrix has a square root. To
see this consider the diagonalization of such a matrix via an orthogonal transformation:

A = QΛQT .

So it is not too hard to see that

A =
(
QΛ1/2QT

) (
QΛ1/2QT

)
= QΛ1/2Λ1/2QT = QΛQT

where the meaning of Λ1/2 is clear since it is diagonal with real elements. So QΛ1/2QT

is the square root of A.
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Chapter 10

Bayesian versus Frequentist
Methods of Inference

If we are Bayesians, then all prior information about models must be cast in the form
of probabilities. However, in some cases, prior information is purely deterministic. For
example, we know based on definition, that mass density and wavespeed are positive.
There is nothing uncertain about this information. On the other hand, we know from
observation that the average mass density of the Earth is less than 7g/cm2. In priciple
we can convert these pieces of deterministic information into probabilities. In this
chapter we will compare and contrast the Bayesian and frequentist views of inference.
This chapter is adapted from [SS97b] and [ST01].

There are two fundamentally different meanings of the term ‘probability’ in common
usage [SS97a]. If we toss a coin N times, where N is large, and see roughly N/2
heads, then we say the probability of getting a head in a given toss is about 50%. This
interpretation of probability, based on the frequency of outcomes of random trails, is
therefore called ‘frequentist’. On the other hand it is common to hear statements such
as: ‘the probability of rain tomorrow is 50%’. Since this statement does not refer to the
repeated outcome of a random trial, it is not a frequentist use of the term probability.
Rather, it conveys a statement of information (or lack thereof). This is the Bayesian use
of ‘probability’. Both ideas seem natural to some degree, so it is perhaps unfortunate
that the same term is used to describe them.

Bayesian inversion has gained considerable popularity in its application to geophysical
inverse problems. The philosophy of this procedure is as follows. Suppose one knows
something about a model before observing the data. This knowledge is cast in a prob-
abilistic form and is called the prior probability model (prior means before the data
have been observed.) Bayesian inversion then provides a framework for combining the
probabilistic prior information with the information contained in the observed data in
order to update the prior information. The updated distribution is the posterior con-
ditional model distribution given the data; it is what we know about the model after
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136 Bayesian versus Frequentist Methods of Inference

we have assimilated the data and the prior information. The point of using the data
is that the posterior information hopefully constrains the model more tightly than the
prior model distribution.

However, the selection of a prior statistical model can in practice be somewhat shaky.
For example, in a seismic survey we may have a fairly accurate idea of the realistic
ranges of seismic velocity and density, and perhaps even of the vertical correlation
length (if bore-hole measurements are available). However, the horizontal length scale
of the velocity and density variation is to a large extent unknown. Given this, how can
Bayesian inversion be so popular when our prior knowledge is often so poor? The reason
for this is that in practice the prior model is used to regularize the posterior solution.
Via a succession of different calculations, the characteristics of the prior model are often
tuned in such a way that the retrieved model has subjectively agreeable features. But
logically, the prior distribution must be fixed before hand. The features used to tune
the prior should in fact be included as part of the prior information [GS97]. So, the
practice of using the data to tune the prior suggests that the reason for the popularity
of Bayesian inversion within the Earth sciences is inconsistent with the underlying
philosophy. A common attitude seems to be: ‘If I hadn’t believed it, I wouldn’t have
seen it.’

Since Bayesian statistics relies completely on the specification of a prior statistical
model, the flexibility taken in using the prior model as a knob to tune properties of
the retrieved model is completely at odds with the philosophy of Bayesian inversion.
One can, however, use an empirical Bayes approach to use data to help determine a
prior distribution. But having used the data to select a prior, one has to correct the
uncertainty estimates so as not to be overconfident [see Carlin and Louis [CL96]]. This
correction is not usually done in geophysical Bayesian inversion.

10.0.1 Bayesian Inversion in Practice

There are two important questions that have to be addressed in any Bayesian inversion:

• How do we represent the prior information? This applies both to the prior model
information and to the description of the data statistics.

• How do we summarize the posterior information?

The second question is the easiest one to answer, at least in principle. It is just a matter
of applying Bayes’ theorem to compute the posterior distribution. We then use this
distribution to study the statistics of different parameter estimates. For example, we can
find credible regions for the model parameters given the data, or simply use posterior
means as estimates and posterior standard deviations as ‘error bars’. However, very
seldom will we be able to compute all the posterior estimates analytically; we often
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have to use computer-intensive approximations based on Markov Chain Monte Carlo
methods [see for example, Tanner [Tan93]]. But still, a complete Bayesian analysis may
be computationally intractable.

The first question is a lot more difficult to answer. A first strategy is a subjective
Bayesian one: prior probabilities are designed to represent states of mind, prejudices
or prior experience. But, depending on the amount and type of prior information, the
choice of prior may or may not be clear. For example, if an unknown parameter, µ, must
lie between a and b, is it justified to assume that µ has a uniform prior distribution
on the interval [a, b]? We will address this question in an example below, but for
now simply observe that there are infinitely many probability distributions consistent
with µ being in the interval [a, b]. To pick one may be an over-specification of the
available information. Even an apparently conservative approach, such as taking the
probability distribution that maximizes the entropy subject to the constraint that µ
lies in the interval, may lead to pathologies in high-dimensional problems. This shows
how difficult it may be to unambiguously select a prior statistical model. One way out
of this dilemma is to sacrifice objectivity and presume that ‘probability lies in the eye
of the beholder’. Of course, this means that our posterior probability will be different
from yours.

A second approach attempts to make a somewhat more objective choice of priors by re-
lying on theoretical considerations such as maximum entropy a [Jay82] , transformation
invariance [Tar87], or by somehow using observations to estimate a prior. This latter
approach is the empirical Bayes mentioned in a previous section. For example, suppose
one is doing a gravity inversion to estimate mass density in some reservoir. Suppose
further that there are available a large number of independent, identically distributed
laboratory measurements of density for rocks taken from this reservoir (a big if!). Then
one could use the measurements to estimate a probability distribution for mass density
that could be used as a prior for the gravity inversion. This is the approach taken in
[GS98], where in-situ (bore-hole) measurements are used to derive an empirical prior
for surface seismic data.

An empirical Bayes analysis is basically an approximation to a full hierarchical Bayes
analysis based on the joint probability distribution of all parameters and available data.
In other words, in a full Bayesian analysis the prior distribution may depend on some
paramaters which in turn follow a second-stage prior. This latter prior can also depend
on some third-stage prior, etc. This hierachical model ends when all the remaining
parameters are assumed known. We can use the empirical Bayes approach when the
last parameters can not be assumed to be known. Instead, we use the data to estimate
the remaining parameters and stop the sequence of priors. We then proceed as in the
standard Bayesian procedure. For an introduction to empirical and hierarchical Bayes
methods see Casella [Cas85], Gelman et al. [GCSR97] and references therein. For a
review on the development of objective priors see Kass and Wasserman [KW96].

aSee the appendix on entropy.
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A third strategy is to abandon Bayes altogether and use only deterministic prior infor-
mation about models: wave-speed is positive (a matter of definition); velocity is less
than the speed of light (a theoretical prediction); the Earth’s average mass density is
less than 7 g/cm3 (a combination of observation and theory that is highly certain).
The inference problem is still statistical since random data uncertainties are taken into
account. Essentially the idea is to look at the set of all models that fit the data. Then
perform surgery on this set, cutting away those models that violate the deterministic
criteria, e.g., have negative density. The result will be a (presumably smaller and more
realistic) set of models that fit the data and satisfy the prior considerations. We choose
any model that fits the data to a desired level and satisfies the prior model constraints.
Tikhonov’s regularization is one way of obtaining an inversion algorithm by restricting
the family of models that fit the data; for example, among all the models that fit the
data, we choose one that has particular features, the smoothest, the shortest, etc.

10.0.2 Bayes vs Frequentist

In the Bayesian approach, probability distributions are the fundamental tools. Bayesians
can speak of the probability of a hypothesis given some evidence, and are able to conduct
pre-data and post-data inferences. Frequentists, on the other hand, are more concerned
with pre-data inference and run into difficulties when trying to give post-data interpre-
tations to their pre-data formulation. In other words, uncertainty estimates, such as
confidence sets, are based on the error distribution, which is assumed to be known a
priori, and on hypothetical repetitions of the data gathering process.

We have seen that the choice of prior distributions is not always well defined. In this
case it would seem more reasonable to follow a frequentist approach. But it may also be
the case that the determinism that frequentists rely on in the definition of parameters
may be ill-defined. For instance, if we are trying to estimate the mass of the earth, is
this a precisly defined, non-random quantity? Perhaps, but does the definition include
the atmosphere? If so, how much of the atmosphere? If not, does it take into account
that the mass is constantly changing (slightly) from, for example, micrometeorites?
Even if you make the ‘true mass of the Earth’ well-defined (it will still be arbitrary to
some extent), it can never be precisely known.

So, which approach is better? Bayesians are happy to point to some well known in-
consistencies in the frequentist methodology and to difficulties frequentists face to use
available prior information. Some Bayesians even go as far as claiming that anyone in
her/his right frame of mind should be a Bayesian. Frequentists, on the other hand,
complain about the sometimes subjective choice of priors and about the computational
complexity of the Bayesian approach. In real down-to-earth data analysis we prefer to
keep an open mind. Different methods may be better than others depending on the
problem. Both schools of inference have something to offer. For colorful discussions on
the comparison of the two approaches see Efron [Efr86] and Lindley [Lin75].
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10.1 What Difference Does the Prior Make?

In a Bayesian calculation, whatever estimator we use depends on the prior and condi-
tional distributions given the data. There is no clear established procedure to check
how much information a prior injects into the posterior estimates. [This is one of the
open problems mentioned in Kass and Wasserman [KW96].] In this example we will
compare the risks of the estimators.

To measure the performance of an estimator, m̂, of m we define the loss function,
L(m, m̂); L is a non-negative function which is zero for the true model. That is, for
any other model m1, L(m,m1) ≥ 0 and L(m,m) ≡ 0. The loss is a measure of the cost
of estimating the true model with m̂ when it is actually m. For example, a common
loss function is the square error: L(m, m̂) = (m − m̂)2. But there are other choices
like `p-norm error: L(m, m̂) = ‖m− m̂‖p.

The loss, L(m, m̂), is a random variable since m̂ depends on the data. We average over
the data to obtain an average loss. This is called the risk of m̂ given the model m

R(m, m̂) = EP L(m, m̂), (10.1)

where P is the error probability distribution and EP the expectation with respect to
this distribution. For square error loss the risk is the usual mean square error.

10.1.1 Bayes Risk

The expected loss depends on the chosen model. Some estimators may have small risks
for some models but not for others. To compare estimators we need a global measure
that takes all plausible models into account. A natural choice is to take the expected
value of the loss with respect to the posterior distribution, p(m|d), of the model given
the data. This is called the posterior risk

rm|d = Em|d L[m, m̂(d)].

Alternatively we can take a weighted average of the risk (10.1) using the prior model
distribution as weight function. This is the Bayes risk

rρ = Eρ R(m, m̂),

where ρ is the prior model distribution. An estimator with the smallest Bayes risk is
called a Bayes estimator. Note that we have used a frequentist approach to define
the Bayes risk, since we have not conditioned on the observed data. It does make
sense, however, to expect good frequentist behavior if the Bayesian approach is to be
used repeatedly with different data sets. In addition, it can be shown that, under very
general conditions, minimizing the Bayes risk is equivalent to minimizing the posterior
risk [Ber85].
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Let f denote the joint distribution of models and data. The distribution (marginal) of
the data is obtained by integrating f over the models

h(d) =
∫

M
f(m,d)dm,

where M is the space of models. From Bayes’ theorem, the conditional distribution of
m given d is

p(m|d) =
f(d|m)ρ(m)

h(d)
,

where ρ(m), the prior distribution, is the marginal of f with respect to m. The con-
ditional distribution, p(m|d), is the so-called Bayesian posterior distribution, which
updates the prior information in view of the data.

One can define a number of reasonable estimators of m based on p(m|d). For example,
the m̂ that maximizes p(m|d) (or that is close, in probability, to m.) Or one could
compute the estimator that gives the smallest Bayes risk for a given prior and loss
function. It can be shown [Lehmann [Leh83], p.239] that, for square error loss function,
the Bayes estimator is the posterior mean.

Here is a simple example of using a normal prior to estimate a normal mean. Assume
that there are n observations, (d1, d2, ..., dn) = d, which are iid N(η, σ2) and that we
want to estimate the mean, η, given that the prior, ρ, is N(µ, β2). Up to a constant
factor, the joint distribution of η and d is [Lehmann [Leh83], p.243]

f(d, η) = exp

[
− 1

2σ

n∑

i=1

(di − η)2

]
exp

[
− 1

2β
(η − µ)2

]
,

The posterior mean is

η̂ = E(η|d) =
nd̄/σ2 + µ/β2

n/σ2 + 1/β2
,

where d̄ is the arithmetic mean of the data. The posterior variance is

Var(η|d) =
1

n/σ2 + 1/β2
.

Notice that the posterior variance is always reduced by the presence of a nonzero β.
The posterior mean, which is the Bayes estimator for square error loss, can be written
as

η̂(d) =

[
n/σ2

n/σ2 + 1/β2

]
d̄ +

[
1/β2

n/σ2 + 1/β2

]
µ.

We see that the Bayes estimator is a weighted average of the mean of the data and
the mean of the Bayesian prior distribution; the latter is the Bayes estimator before
any data have been observed. The Bayes risk is the integral, over the data, of the
posterior variance of η. Since the posterior variance does not depend of d, the Bayes
risk is just the posterior variance. Note also that as β → 0, increasingly strong prior
information, the estimate converges to the prior mean. As β → ∞, increasingly weak
prior information, the Bayes estimate converges to the mean of the data. Also note
that as β →∞ the prior becomes improper (not normalizable).
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10.1.2 What is the Most Conservative Prior?

It often happens that there is not enough information to choose a prior density for the
unknown parameters, or that the information available is not easily translated into a
probabilistic statement; yet we need a prior to be able to apply Bayes’ theorem. In
this case we try to find a ‘noninformative’, or ‘conservative’, prior that will allow us
to conduct the Bayesian inference while injecting a minimum of artificial information;
that is, information which is not justified by the physical process.

We have defined the Bayes risk, rρ, and the Bayes estimator for a given prior density.
It stands to reason that the more informative the prior the smaller its associated risk;
we therefore say that a prior, ρ, is least favorable if rρ ≥ rρ′ for any other prior, ρ′. A
least favorable prior is associated with the greatest unavoidable loss.

In the frequentist approach the greatest unavoidable loss is associated with the maxi-
mum of the risk (10.1) over all the possible models. An estimator that minimizes this
maximum risk is called a minimax estimator. Under certain conditions the Bayes es-
timator corresponding to a least favorable prior actually minimizes the maximum risk
[see Lehmann [Leh83]]. This is true, for example, when the Bayes estimator has a con-
stant risk. In this sense we can think of a least favorable prior as being a route to the
most conservative Bayesian estimator.

How does one find a conservative (noninformative) prior? There is no easy answer, even
the terms ‘conservative’ and ‘noninformative’ are not well defined. One possibility is
to define a measure of information (e.g., entropy) and determine a prior which mini-
mizes/maximizes this measure (e.g., maximum entropy). We could also look for priors
which are invariant under some family of transformations.

10.2 Example: A Toy Inverse Problem

We consider a simple example of estimating the mean, η, of a unit variance normal
distribution, N(η, 1), with an observation, d, from N(η, 1) given that |η| is known to
be bounded by β. Following Stark [Sta97], we will use this as a model of an inverse
problem with a prior constraint. Without the prior bound, d is an estimator of η but
we hope to do better (obtain a smaller risk) by including the bound information. How
can we include this information in the estimation procedure? One possibility is to use
a Bayesian approach and assign a prior distribution to η which is uniform on [−β, β].
We will show that this distribution injects stronger information than might be evident.
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10.2.1 Bayes Risk

Start with an observation, d, from N(η, 1) and suppose we know a priori that |η| is
bounded by β. We incorporate the bound by assigning to η a prior uniformly distributed
on [−β, β]. The joint distribution of η and d is then

f(d, η) =
1

2β
I[−β,β]

1√
2π

exp
[
−1

2
(d− η)2

]
,

where I[−β,β](x) = 1 for x ∈ [−β, β] and zero otherwise.

We reproduce Stark’s Monte Carlo calculation of the Bayes risk for this problem. Fig-
ure 10.1 shows the Bayes risk, using a uniform prior on [−β, β], and the minimax risk to
be described next. As the constraint weakens (β increases) the Bayes risk gets closer to
1. (The dashed and dotted curves in this figure will be explained in the next section.)

10.2.2 The Flat Prior is Informative

We have used the uniform distribution to ‘soften’ (i.e., convert to a probabilistic state-
ment) the constraint |η| ≤ β. Now we want to measure the effect of this constraint
softening. Have we included more information than we really had?

Given the observation, d, from N(η, 1) and knowing that |η| ≤ β, what is the worst risk
(mean square error) we may hope to achieve with the best possible estimator without
imposing a prior distribution on η? In other words we want to compute the minimax
risk, R(β), given the bound β

R(β) = minδ maxη∈[−β,β] EP [η − δ(d)]2.

R(β) is a lower bound for the maximum risk of any other estimator. Although it
is difficult to compute its exact value, it is easy to see that R(β) ≤ min{β2, 1}. In
addition, Donoho et al. [DLM90] show that

4

5

β2

β2 + 1
≤ R(β).

Figure 1 shows upper and lower bounds for for the minimax risk as a function of β.
Note that for β ≤ 3 the Bayes risk is outside the minimax bounds. This is an artifact
of the way we have ‘softened’ the bound. In other words, the uniform prior distribution
injects more information than the hard bound on η, as judged by comparing the most
pessimistic frequentist risk with that of the Bayesian estimator. It can also be shown
that R(b)→ 1 as b→∞. So, as the bound weakens the Bayes and minimax risk both
approach 1.
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Figure 10.1: For square error loss, the Bayes risk associated with a uniform prior is
shown along with the upper and lower bounds on the minimax risk as a function of
the size of the bounding interval [−β, β]. When β is comparable to or less than the
variance (1 in this case), the risk associated with a uniform prior is optimistic
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10.3 Priors in High Dimensional Spaces: The Curse

of Dimensionality

As we have just seen, most probability distributions usually have more information
than implied by a hard constraint. To say, for instance, that any model with ‖m‖ ≤ 1
is feasible is certainly not the same thing as saying that all models with ‖m‖ ≤ 1 are
equally likely. And while we could look for the most conservative or least favorable
such probabilistic assignment, Backus [Bac88] makes an interesting argument against
any such probabilistic replacement in high- or infinite-dimensional model spaces. His
point can be illustrated with a simple example. Suppose that all we know about an n-
dimensional model vector, m, is that its length, m ≡ ‖m‖, is less than some particular
value–unity for the sake of definiteness. In other words, suppose we know a priori
that m is constrained to be within the n-dimensional unit ball, Bn. Backus considers
various probabilistic replacements of this hard constraint; this is called ‘softening’ the
constraint. We could for example choose a prior probability on m which is uniform on
Bn. Namely, the probability that m will lie in some small volume, δV ∈ Bn, shall be
equal to δV divided by the volume of Bn. Choosing this uniform prior on the ball, it is
not difficult to show that the expectation of m2 for an n-dimensional m is

E(m2) =
n

n + 2

which converges to 1 as n increases. Unfortunately, the variance of m2 goes as 1/n
for large n, and thus we seem to have introduced a piece of information that was not
implied by the original constraint; namely that for large n, the only likely vectors, m,
will have length equal to one. The reason for this apparently strange behavior has to
do with the way volumes behave in high dimensional spaces. The volume, Vn(R), of
the R− diameter ball in n dimensional space is

Vn(R) = CnR
n,

where Cn is a constant that depends only on the dimension n, not on the radius. [This
is a standard result in statistical mechanics; e.g., Becker [Bec67].] If we compute the
volume, Vε,n, of an n-dimensional shell of thickness ε just inside an R-diameter ball we
can see that

Vε,n ≡ Vn(R)− Vn(R− ε) = Cn(Rn − (R− ε)n)

= Vn(R)
(

1−
(

1− ε

R

)n)
. (10.2)

Now, for ε/R� 1 and n� 1 we have

Vε,n ≈ Vn(R)
(
1− e−nε/R

)
.

This says that as n gets large, nearly all of the volume of the ball is compressed into a
thin shell just inside the radius.
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But even this objection can be overcome with a different choice of probability distri-
bution to soften the constraint. For example, choose m to be uniformly distributed on
[0, 1] and choose the n−1 spherical polar angles uniformly on their respective domains.
This probability is uniform on ‖m‖, but non-uniform on the ball. However it is con-
sistent with the constraint and has the property that the mean and variance of m2 is
independent of the dimension of the space.

So, as Backus has said, we must be very careful in replacing a hard constraint with
a probability distribution, especially in a high-dimensional model space. Apparently
innocent choices may lead to unexpected behavior.

Appendix: Entropy

This appendix is a brief introduction to entropy as it relates to inversion. For more
details see [GMS01]. In Bayesian inversion we use probabilities to represent states of
information. But just how does one quantify such a state? Is it possible to say that
one probability has more information than another?

Consider an experiment with N possible outcomes each occuring with a probability pi.
In analogy with the statistical mechanical definition of entropy, [Sha48] introduced the
following definition of the entropy for such discrete probabilities:

H(p) = −
∑

i

pi log pi. (10.3)

Following Shannon, three postulates should be satisfied by H(p) or any other measure
of information. Those are:

1. Continuity;

2. Monotonicity, and

3. Composition Law.

These postulates are discussed in detail in [GMS01], here a qualitative understanding is
sufficient. The first postulate requires that we should not gain or loose a large amount
of information by making a small change to the probabilities. The second postulate,
monotonicity, refers to the information associated with a collection of independent,
equally likely events. It is clear that in such a case the uncertainty must increase
monotonically with the number of possible outcomes. The third postulate requires that
it should not matter how one regroups the events of a given set. The entropy of the set
should stay the same.

To see the meaning of Equation 10.3, consider an experiment whose outcome is known
with absolute certainty. Then, the corresponding probability density is a Kronecker
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delta pi = δiq, where q is the certain event, and H(p) = 0 (no uncertainty). If there
are two equally likely outcomes, then H(p) = −1/2 log(1/2) − 1/2 log(1/2) = log 2.
Whereas if one of the events has a probability 1/10 and one has probability 9/10 then
the entropy is H(p) = −1/10 log(1/10) − 9/10 log(9/10) = log 10 − .9 log 9, which is
about half that in the equally likely case. For M equally likely events H(p) = logM .
And in the limit that M goes to infinity, then the uncertainty must too.

The usefulness of the definition 10.3 depends on the definition of the probability p. If the
p is a 1D distribution associated with the frequency of outcomes of the possible events,
then p is not affected by the correlation of the points. E.g., if we sample 10 points
pseudo-randomly from a probability distribution with two equally likely outcomes 0
and 1, we might see something like the following

0010110110.

As luck would have it there are 5 0’s and 5 1’s. Now sort these outcomes in increasing
order

0000011111.

There are still 5 0’s and 5 1’s but we certainly would not regard the latter experiment
as representing the same degree of uncertainty as the former. Similarly, if we sample
1000 points independently from a Gaussian we’ll see a nice bell-shaped curve. But the
frequencies of the binned events are independent of their order. So, once again, sorting
them into monotonic order will not change the entropy. of course, the dependence
(correlation) among events is not being considered by an unidimensional probability
distribution. Once multidimensional probabilities are used in definition (10.3), such
correlation can be accounted for in entropy calculations.

Now, in inverse theory we are always comparing one state of information to another—
what we know before relative to what we know after. So it is more appropriate to
measure the relative information of one probability compared to another. Let us there-
fore revise the original definition of discrete entropy (Equation (10.3)), and introduce
the concept of relative entropy. Thus,

H[pi; qi] = −
∑

i

pi log
pi
qi
. (10.4)

Here, qi is a discrete probability characterizing a reference state of information. The
extension of Equation (10.4) to the continuous case is clean and straightforward:

H[p(x); q(x)] = −
∑

i

p(xi)∆xi log
p(xi)∆xi
q(xi)∆xi

= −
∑

i

p(xi) log
p(xi)

q(xi)
∆xi

= −
∫ b

a
p(x) log

p(x)

q(x)
dx, (10.5)

as ∆xi → 0 (or n→∞)
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which is finite.

We will adopt Equation (10.4) as the definition of relative entropy in the discrete case,
and, as commonly done, the last expression of Equation (10.6) as the definition of
relative entropy in the continuous case. q(x), or qi, represents a state of information
against which we make comparisons. Finally it is worth mentioning that the negative
of the quantity H[p(x); q(x)], known as cross-entropy, was first defined by Kullback
[Kul59] as the directed divergence. This quantity defines the amount of information of
the probability density p(x) with respect to q(x). See also [SJ81].

Convinced that entropy is a suitable measure for the uncertainty of a probability dis-
tribution, Jaynes [Jay57] showed that a useful tool for conservatively assigning proba-
bilities was to maximize the entropy of the unknown distribution subject to constraints
on its moments.

Mathematically this variational problem can be expressed by maximizing Equation (10.4)
subjected to the normalization of the distribution

N∑

i=1

p(xi) = 1, (10.6)

and to other constraints given in the form of expectations

〈wk(x)〉 =
N∑

i=1

wk(xi)p(xi), k = 1, ..., K. (10.7)

This is equivalent to the unconstrained problem, given by

S(p;λ, q) = −
N∑

i=1

p (xi) ln
p (xi)

q (xi)

−(λ0 − 1)

[
N∑

i=1

p (xi)− 1

]

−
K∑

k=1

λk

[
N∑

i=1

wk(xi) p (xi)− µk
]
, (10.8)

where µk are sample estimates of 〈wk(x)〉 and the λk are the Lagrange multipliers
associated with the constraints. Note that the term (λ0− 1) is just a redefinition of the
zero-order Lagrange multiplier introduced for convenience. If we take the first variation
of the functional S(p;λ, q) with respect to the probabilities, we get that δS(p;λ, q)
equals

N∑

i=1

[
∂H

∂p(xi)
− (λ0 − 1)−

K∑

k=1

λkwk(xi)

]
δp(xi), (10.9)

with
∂H

∂p(xi)
= −

[
ln
p (xi)

q (xi)
+ 1

]
. (10.10)
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The solution to the problem can be found in the usual way by letting δS(p) = 0, which
yields

p(xi) = q(xi) exp

[
−λ0 −

K∑

k=1

λkwk(xi)

]
, (10.11)

or

p(xi) = Z−1q(xi) exp

[
−

K∑

k=1

λkwk(xi)

]
, (10.12)

with

Z ≡ exp(λ0) =
N∑

i=1

q(xi) exp

[
−

K∑

k=1

λkwk(xi)

]
. (10.13)

However, to determine the maximum-entropy probability function we still need to find
the values for the other Lagrange multipliers and to specify the prior probability q(xi).
Techniques and examples of maximum entropy calculations of this sort are described
in [GMS01].
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Chapter 11

Iterative Linear Solvers

We have seen throughout the course that least squares problems are ubiquitous in in-
verse theory for two main reasons. First, least squares gives rise to linear problems,
which are relatively easy to deal with. And secondly, finding the maximum of a Gaus-
sian distribution is a least squares problem. That means that if the final a posteriori
probability on the models is Gaussian, then finding the maximum a posteriori (MAP)
model amounts to solving a weighted least squares problem. For both reasons, least
squares is very important and a number of specialized numerical techniques have been
developed. In this chapter we digress and discuss a very useful class of iterative algo-
rithms for solving linear systems. These methods are at the core of most large-scale
inverse calculations.

11.1 Classical Iterative Methods for Large Systems

of Linear Equations

A direct method for solving linear systems involves a finite sequence of steps, the
number of which is known in advance and does not depend on the matrix involved.
Usually nothing can be gained by halting a direct method early; it’s all or nothing.
If the matrix is sparse, direct methods will almost always result in intermediate fill,
the creation of new nonzero matrix elements during the solution. Fill can usually be
mitigated by carefully ordering operations and/or the matrix elements. Even so, direct
methods for sparse linear systems require a certain amount of sophistication and careful
programming. On the other hand, iterative methods start with some approximation,
perhaps random, to the solution of the linear system and refine it successively until some
“stopping criterion” is satisfied. Most iterative methods do not require the matrix to
be explicitly defined; it often suffices to know the action of the matrix (and perhaps its
transpose) on arbitrary vectors. As a result, fill does not occur and the data structures
necessary to store and manipulate the matrix elements can be quite simple. The general
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subject of iterative methods is vast and in no sense will a survey be attempted. The aim
of the first section is simply to get the ball rolling and introduce a few classical methods
before diving into conjugate gradient. In addition, the classical iterative methods are
mostly based on matrix “splitting” which plays a key role in preconditioned conjugate
gradient. This brief discussion is patterned on Chapter 8 of [SB80] and Chapter 4
of [You71]. Young is the pioneer in computational linear algebra and his book is the
standard reference in the field.

Let A be a nonsingular n×n matrix and x = A−1h be the exact solution of the system

Ax = h. (11.1)

A general class of iterative methods is of the form

xi+1 = Φ(xi), i = 0, 1, 2, . . . (11.2)

where Φ is called the iteration function. A necessary and sufficient condition for (11.2)
to converge is that the spectral radiusa of Φ be less than one. For example, taking
(11.1), introduce an arbitrary nonsingular matrix B via the identity

Bx + (A−B)x = h. (11.4)

Then, by making the ansatz

Bxi+1 + (A− B)xi = h (11.5)

one has

xi+1 = xi − B−1(Axi − h) = (I −B−1A)xi +B−1h. (11.6)

In order for this to work one must be able to solve (11.5). Further, the closer B is to
A, the smaller the moduli of the eigenvalues of I −B−1A will be, and the more rapidly
will (11.6) converge. Many of the common iterative methods can be illustrated with
the following splitting.

A = D − E − F (11.7)

where D = diag(A), −E is the lower triangular part of A and−F is the upper triangular
part of A. Now, using the abbreviations

L ≡ D−1E, U ≡ D−1F, J ≡ L+ U, H ≡ (I − L)−1U (11.8)

and assuming ai,i 6= 0 ∀i, one has

aThe spectral radius of an operator is the least upper bound of its spectrum σ:

ρ(Φ) ≡ sup
λ∈σ(Φ)

| λ | (11.3)
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Algorithm 1 Jacobi’s Method

B = D, I − B−1A = J (11.9)

aj,jxj(i+1) +
∑

k 6=j
aj,kxk(i) = hj j = 1, 2, . . . , n, i = 0, 1, . . . (11.10)

where the subscript in parentheses refers to the iteration number. Jacobi’s method is
also called the “total step method.” To get the “single step” or Gauss-Seidel method
choose B to be the lower triangular part of A including the diagonal:

Algorithm 2 Gauss-Seidel Method

B = D − E, I − B−1A = (I − L)−1U = H (11.11)
∑

k<j

aj,kxk(i+1) + aj,jxj(i+1) +
∑

k>j

aj,kxk(i) = hj j = 1, 2, . . . , n, i = 0, 1, . . . (11.12)

More generally still, one may consider using a class of splitting matrices B(ω) depending
on a parameter ω, and choosing ω in such a way as to make the spectral radius of
I−B−1(ω)A as small as possible. The “relaxation” methods are based on the following
choice for B:

Algorithm 3 Relaxation Methods

B(ω) =
1

ω
D(I − ωL) (11.13)

B(ω)xi+1 = (B(ω)− A)xi + h i = 0, 1, . . . (11.14)

For ω > 1 this is called overrelaxation, while for ω < 1 it is called underrelaxation.
For ω = 1 (11.14) reduces to Gauss-Seidel. The rate of convergence of this method is
determined by the spectral radius of

I −B−1(ω)A = (I − ωL)−1[(1− ω)I + ωU ] (11.15)

The books by Young [You71] and Stoer & Bulirsch [SB80] have many convergence
results for relaxation methods. An important one, due to Ostrowski and Reich is:

Theorem 12 For positive definite matrices Ab

ρ(I −B−1(ω)A) < 1 ∀ 0 < ω < 2. (11.16)

In particular, the Gauss-Seidel method (ω = 1) converges for positive definite matrices.

For a proof of this result, see [SB80], pages 547–548. This result can be considerably
sharpened for what Young calls type-A matrices or the “consistently ordered” matrices
(see, for example, [You71], chapter 5).

bA matrix A is positive if (x,Ax) ≥ 0 for all x. It is positive definite if the inequality is strict.
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11.2 Conjugate Gradient

Conjugate gradient is by far the most widely used iterative method for solving large
linear systems. In its simplest forms it is easy to program and use, yet retains the
flexibility to tackle some very demanding problems. Theoretically, CG is a descendant
of the method of steepest descent, which is where the discussion begins. But first, a
few definitions.

11.2.1 Inner Products

We will assume that vectors lie in finite dimensional Cartesian spaces such as Rn. An
inner product is a scalar-valued function on Rn × Rn, whose values are denoted by
(x,y), which has the following properties:

positivity (x,x) ≥ 0; (x,x) = 0⇔ x = 0 (11.17)

symmetry (x,y) = (y,x) (11.18)

linearity (x,y + z) = (x,y) + (x, z) (11.19)

continuity (αx,y) = α(x,y). (11.20)

This definition applies to general linear spaces. A specific inner product for Cartesian
spaces is (x,y) ≡ xT · y =

∑n
i=1 xiyi

11.2.2 Quadratic Forms

A quadratic form on Rn is defined by

f(x) =
1

2
(x, Ax)− (h,x) + c (11.21)

where A ∈ Rn×n; h,x ∈ Rn; and c is a constant. The quadratic form is said to be
symmetric, positive, or positive definite, according to whether the matrix A has these
properties. The gradient of a symmetric quadratic form f is

f ′(x) = Ax− h. (11.22)

This equation leads to the key observation: finding critical points of quadratic forms
(i.e., vectors x where f ′(x) vanishes) is very closely related to solving linear systems.
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11.2.3 Quadratic Minimization

The fact that solutions of Ax = h can be maxima or saddle points complicates things
slightly. We will use the concept of positivity for a matrix. A matrix A is said to be
positive if (x, Ax) ≥ 0 for all x. So one must make a few assumptions which are clarified
by the following lemma.

Lemma 2 Suppose that z is a solution of the system Az = h, A is positive and sym-
metric, and f(x) is the quadratic form associated with A, then

f(x) = f(z) +
1

2
((x− z), A(x− z)). (11.23)

This means that z must be a minimum of the quadratic form since the second term on
the right is positive. Thus the value of f at an arbitrary point x must be greater than
its value at z. To prove this, let x = z + p where Az = h. Then

f(x) = f(z + p) =
1

2
((z + p), A(z + p))− (h, (z + p)) + c.

= f(z) +
1

2
{(z, Ap) + (p, Az) + (p, Ap)} − (h,p).

If A is symmetric, the first two terms in brackets are equal, hence:

f(x) = f(z) +
1

2
(p, Ap) + (Az,p)− (h,p).

But by assumption Az = h, so that

f(x) = f(z) +
1

2
(p, Ap) = f(z) +

1

2
((x− z), A(x− z))

which completes the proof.

As a corollary one observes that if A is positive definite as well as symmetric, then z is
the unique minimum of f(z) since in that case the term ((x− z), A(x− z)) is equal to
zero if and only if x = z. It will be assumed, unless otherwise stated, that the matrices
are symmetric and positive definite.

The level surfaces of a positive definite quadratic form (i.e, the locus of points for which
f(x) is constant) is an ellipsoid centered about the global minimum. And the semiaxes
of this ellipsoid are related to the eigenvalues of the defining matrix.

The negative gradient of any function points in the direction of steepest descent of the
function. Calling this direction r one has

r = −f ′(x) = h− Ax = A(z− x) (11.24)

since Az = h. The idea behind the method of steepest descents is to repeatedly
minimize f along lines defined by the residual vector. A prescription for this is given
by the following lemma.
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Lemma 3 For some choice of a constant α

f(x) = f(x + 2αr) (11.25)

f(x + αr)− f(x) ≤ 0 (11.26)

where r is the residual vector and x is arbitrary.

In other words, there exists a constant α such that by moving by an amount 2α along
the residual, one ends up on the other side of the ellipsoid f(x) = constant. And
further, if one moves to the midpoint of this line, one is assured of being closer to (or at
the very least, not farther away from) the global minimum. The proof of this assertion
is by construction. From the definition of f one has for arbitrary x, α

f(x + 2αr) =
1

2
((x + 2αr), A(x + 2αr))− (h, (x + 2αr)) + c

= f(x) +
1

2
{(2αr, Ax) + (2αr, A2αr) + (x, A2αr)} − (h, 2αr)

= f(x) + 2α(r, Ax) + 2α2(r, Ar)− 2α(h, r)

= f(x)− 2α(r, r) + 2α2(r, Ar)

using Ax = h− r.

Therefore, choosing α to be (r, r)/(r, Ar) implies that f(x + 2αr) = f(x). Repeating
the argument for f(x + αr) with the same choice of α, one sees immediately that

f(x + αr) = f(x)− 1

2

(r, r)2

(r, Ar)
≤ f(x)

which completes the proof for A symmetric and positive definite.

This lemma provides all that is necessary to construct a globally convergent gradi-
ent algorithm for finding the solutions of symmetric, positive definite linear systems,
or equivalently, finding the minima of positive definite quadratic forms. By globally
convergent we mean that it converges for any starting value.

Algorithm 4 Method of Steepest Descent Choose x0. This gives r0 = h − Ax0.
Then for k = 1, 2, 3, . . .

αk = (rk−1, rk−1)/(rk−1, Ark−1),
xk = xk−1 + αkrk−1

rk = h− Axk

(11.27)

Since it has already been shown that f(x + αr) ≤ f(x) for any x, it follows that

f(x0) ≥ f(x1) ≥ . . . ≥ f(xk) . . . (11.28)
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is a monotone sequence which is bounded below by the unique minimum f(z). That
such a sequence must converge is intuitively clear and indeed follows from the Monotone
Convergence Theorem. The proof of this theorem relies on a surprisingly deep property
of real numbers: any nonempty set of real numbers which has a lower bound, has a
greatest lower bound (called the infinum). Having thus established the convergence of
f(xk) to f(z), the convergence of xk to z follows from Lemma 2 and the properties of
inner products:

f(z)− f(xk) = −1

2
(xk − z, A(xk − z))→ 0⇒ xk − z→ 0 (11.29)

since A is positive definite.

There is a drawback to steepest descent, which occurs when the ratio of the largest
to the smallest eigenvalue (the condition number κ) is very large; the following result
quantifies ill-conditioning for quadratic minimization problems.

Theorem 13 Let λmax and λmin be the largest and smallest eigenvalues of the sym-
metric positive definite matrix A. Let z be the minimum of f(x) and r the residual
associated with an arbitrary x. Then

‖ r ‖
2λmax

≤ f(x)− f(z) ≤ ‖ r ‖
2λmin

(11.30)

where ‖ x ‖2≡ (x,x) is the Euclidean norm.

If all the eigenvalues of A were the same, then the level surfaces of f would be spheres,
and the steepest descent direction would point towards the center of the sphere for any
initial vector x. Similarly, if there are clusters of nearly equal eigenvalues, then steep-
est descent will project out the spherical portion of the level surfaces associated with
those eigenvalues nearly simultaneously. But if there are eigenvalues of very different
magnitude then the portions of the level surfaces associated with them will be long
thin ellipsoids. As a result, the steepest descent direction will not point towards the
quadratic minimum. Depending upon the distribution of eigenvalues, steepest descent
has a tendency to wander back and forth across the valleys, with the residual changing
very little from iteration to iteration.

The proof of this result is as follows. Let x = z+p where x is arbitrary. From Lemma 2,

f(x)− f(z) =
1

2
(p, Ap)

Now, p = −A−1r, so that

1

2
(A−1r, r) =

1

2
(p, Ap)
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Symmetric, positive definite matrices can be diagonalized by orthogonal matrices: A =
RDRT , A−1 = RD−1RT , where D is the diagonal matrix of the eigenvalues of A, and
R is orthogonal. Using the diagonalization of A,

1

2
(p, Ap) =

1

2
(D−1y,y)

where y ≡ RT r. This last inner product can be written explicitly as

1

2
(D−1y,y) =

1

2

n∑

i=1

λ−1
i y2

i

where λi is the i-th eigenvalue of A. Next, we have the bounds

1

2λmax

n∑

i=1

y2
i ≤

1

2

n∑

i=1

λ−1
i y2

i ≤
1

2λmin

n∑

i=1

y2
i .

Since the vector y is related to the residual r by rotation, they must have the same
length (‖ y ‖2=‖ Rr ‖2= (Rr, Rr) = (r, RTRr) = (r, r) =‖ r ‖2 .) Recalling that

f(x)− f(z) =
1

2
(p, Ap) =

1

2
(D−1y,y)

one has

1

2λmax
‖ r ‖2≤ f(x)− f(z) ≤ 1

2λmin
‖ r ‖2

which completes the proof.

We can get a complete picture of what’s really happening in this method by considering
a simple example. Suppose we wish to solve

Ax = h (11.31)

where A = diag(10, 1) and h = (1,−1). If we start the steepest descent iterations
with x0 = (0, 0) then the first few residuals vectors are: (1,−1) , (−9/11,−9/11),
(81/121, 81/121) and so on. In general the even residuals are proportional to (1,−1)
and the odd ones are proportional to (−1,−1). The coefficients are (9/11)n, so the
norm of the residual vector at the i-th step is ri =

√
2(9/11)i. If the matrix were

A = diag(100, 1) instead, the norm of the i-th residual would be ri =
√

2(99/101)i:
steepest descent would be very slow to converge.

This can be seen graphically from a plot of the solution vector as a function of iteration
superposed onto a contour plot of the quadratic form associated with the matrix A,
shown in Figure (11.1).

It is not a coincidence that the residuals at each step of steepest descent are orthogonal
to the residuals before and after. We can prove this generally:

rk = h− Axk (11.32)

= h− A(xk−1 + αkrk−1) (11.33)

= rk−1 − αkArk−1. (11.34)
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Figure 11.1: Contours of the quadratic form associated with the linear system Ax = h
where A = diag(10, 1) and h = (1,−1). Superposed on top of the contours are the
solution vectors for the first few iterations.

Therefore,

(rk, rk−1) = (rk−1, rk−1)−
(rk−1, rk−1)

(rk−1, Ark−1)
(rk−1, Ark−1) ≡ 0 (11.35)

So the residuals are pairwise orthogonal. The question naturally arises, is convergence
always asymptotic? Is there ever a situation in which SD terminates in exact arithmetic?
Using the above expression

rk = rk−1 − αkArk−1 (11.36)

we see that rk = 0 if and only if rk−1 = αkArk−1. But this just means that the
residual at the previous step must be an eigenvector of the matrix A. We know that
the eigenvectors of any symmetric matrix are mutually orthogonal, so this means that
unless we start the steepest descent iteration so that the first residual lies along one of
the principal axes of the quadratic form, convergence is not exact.

11.2.4 Computer Exercise: Steepest Descent

Write a program implementing SD for symmetric, positive definite matrices. Consider
the following matrix, right-hand side, and initial approximation:

A = {{10,0},{0,1};

h = {1,-1};

x = {0,0}];
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Symbolic arithmetic packages, including Mathematica, can solve the problem in exact
arithmetic. This is very useful for analysis of the effects of rounding errors.

Figure out geometrically what steepest descent is doing. Does SD ever converge in
finitely many steeps on this problem in exact arithmetic? In this case you should be
able to derive an analytic expression for the residual vector. Make plots showing the
level curves of the quadratic form associated with A. Then plot the solution vector as
a function of iteration. The changes should always be normal to the contours. Under
what circumstances can the residual vector be exactly zero? What is the geometrical
interpretation of this?

Do your conclusions generalize to symmetric non-diagonal matrices?

What happens if you change the matrix from diag(10,1) to diag(100,1)?

11.2.5 The Method of Conjugate Directions

The problem with steepest descent (SD) is that for ill-conditioned matrices the residual
vector doesn’t change much from iteration to iteration. A simple scheme for improving
its performance goes back to Fox, Husky, and Wilkinson [FHW49] and is called the
conjugate direction (CD) method. Instead of minimizing along the residual vector, as
in SD, minimize along “search vectors” pk which are assumed (for now) to be orthogonal
with respect to the underlying matrix. This orthogonality will guarantee convergence
to the solution in at most n steps, where n is the order of the matrix.

So replace the step

xk = xk−1 + αkrk−1

with

xk = xk−1 + αkpk−1

where p is to be defined. As in SD the idea is to minimize f along these lines. The scale
factors α, as in SD, are determined by the minimization. Using the proof of Lemma 2,

f(xk + αpk) = f(xk) +
1

2
(αpk, Aαpk)− (αpk, rk) (11.37)

= f(xk) +
1

2
α2(pk, Apk)− α(pk, rk)

Setting ∂f(xk+αpk)
∂α

= 0 gives

α ≡ αk+1 =
(pk, rk)

(pk, Apk)
=

(rk, rk)

(pk, Apk)
.

The last expression for α is part of Lemma 4
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So, provided the scale factors αk satisfy the last equation, one is guaranteed to minimize
the residual along the search vector pk. The conditions necessary for the search vectors
are given by the following theorem.

Theorem 14 Conjugate Direction Theorem Suppose that the search vectors are
chosen such that (pi, Apj) = 0 if i 6= j (A-orthogonality), then the CD method converges
to the exact solution in at most n steps.

Proof. Using the CD iteration

xk = xk−1 + αkpk−1, k = 1, 2, . . .

one has by induction

xk − x0 = α1p0 + α2p1 + · · ·+ αkpk−1

for any x0 chosen. Since the p vectors are A-orthogonal, it follows that

(pk, A(xk − x0)) = 0.

The A-orthogonality also implies that the p vectors must be linearly independent. Thus
any vector in Rn can be represented as an expansion in the {pk}n−1

k=0. In particular, the
unknown solution z of the linear system can be written

z = γ0p0 + · · ·+ γn−1pn−1.

Taking the inner product of this equation with first A and then pi, and using the
A-orthogonality gives

(pi, Az) = γi(pi, Api)⇒ γi =
(pi, Az)

(pi, Api)
.

The idea of the proof is to show that these numbers, namely the γi, are precisely the
coefficients of the CD algorithm; that would automatically yield convergence since by
proceeding with CD we would construct this expansion of the solution. Just as an
arbitrary vector x can be expanded in terms of the linearly independent search vectors,
so can z− x0 where x0 is still the initial approximation. Thus,

z− x0 =
n−1∑

i=0

(pi, A(z− x0))

(pi, Api)
pi ≡

n−1∑

i=0

ξipi (11.38)

where

ξk =
(pk, A(z− x0))

(pk, Apk)
. (11.39)
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It was shown above that (pk, A(xk − x0)) = 0. Therefore one can subtract

(pk, A(xk − x0))/(pk, Apk)

from the expression for ξk without changing it. Thus,

ξk =
(pk, A(z− x0))

(pk, Apk)
− (pk, A(xk − x0))

(pk, Apk)

=
(pk, A(z− xk))

(pk, Apk)

=
(pk, rk)

(pk, Apk)
.

This is precisely the scale factor αk used in the CD iterations, which completes the
proof. Thus we have

Algorithm 5 Method of Conjugate Directions Choose x0. This gives r0 = h −
Ax0. Let {pi}Ni=1 be a set of A-orthogonal vectors. Then for k = 1, 2, 3, . . .

αk = (rk−1, rk−1)/(pk−1, Apk−1),
xk = xk−1 + αkpk−1

rk = h− Axk

(11.40)

The A-orthogonality can be seen to arise geometrically from the fact that the vector
which points from the current location x to the global minimum of the quadratic form
z must be A-orthogonal to the tangent plane of the quadratic form. To see this observe
that since since the residual r must be normal to the surface, a tangent t must satisfy
(t, r) = 0. Therefore 0 = (t, Ax− h) = (t, Ax− Az) = (t, Ap), where p = x− z.

So far, all this shows is that if n vectors, orthogonal with respect to the matrix A
can be found, then the conjugate direction algorithm will give solutions to the linear
systems of the matrix. One can imagine applying a generalized form of Gram-Schmidt
orthogonalization to an arbitrary set of linearly independent vectors. In fact Hestenes
and Stiefel [HS52] show that A-orthogonalizing the n unit vectors in Rn and using
them in CD leads essentially to Gaussian elimination. But this is no real solution since
Gram-Schmidt requires O(n3) operations, and the search vectors, which will generally
be dense even when the matrix is sparse, must be stored. The real advance to CD was
made by Hestenes and Stiefel, who showed that A-orthogonal search vectors could be
computed on the fly. This is the conjugate gradient method.

11.2.6 The Method of Conjugate Gradients

Using the machinery that has been developed, it is a relatively easy task to describe
the conjugate gradient (CG) algorithm as originally proposed by Hestenes and Stiefel
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[HS52].c In going from steepest descent to conjugate directions, minimization along the
residuals was replaced by minimization along the search vectors. So it makes sense to
consider computing the search vectors iteratively from residuals. Suppose we make the
ansatz p0 = r0 and

pk+1 = rk+1 + βk+1pk. (11.41)

Can the coefficients β be chosen so as to guarantee the A-orthogonality of the p vectors?
Using (11.41), one has

(pk, Apk+1) = (pk, Ark+1) + βk+1(pk, Apk). (11.42)

If one chooses

βk+1 = −(pk, Ark+1)

(pk, Apk)

then the A-orthogonality is guaranteed. In Lemma 4 it will be shown that

βk+1 = −(rk+1, Apk)

(pk, Apk)
=

(rk+1, rk+1)

(rk, rk)

As a final touch, notice that the residuals can be calculated recursively; by induction

rk+1 ≡ h− Axk+1

= h− A(xk + αk+1pk)

= (h− Axk)− αk+1Apk

= rk − αk+1Apk.

The result of all this work is:

Algorithm 6 Method of Conjugate Gradients Choose x0. Put p0 = r0 = h−Ax0.
Then for k = 0, 1, 2, . . .

αk+1 = (rk,rk)
(pk ,Apk)

xk+1 = xk + αk+1pk
rk+1 = rk − αk+1Apk
βk+1 = (rk+1,rk+1)

(rk,rk)

pk+1 = rk+1 + βk+1pk

(11.43)

The α coefficients are the same as in the CD algorithm, whereas the β coefficients arise
from the CG ansatz: p0 = r0,pk+1 = rk+1 + βk+1pk. From a computational point of
view, note the simplicity of the algorithm. It involves nothing more than:

• The inner product of a matrix and a vector; and only one per iteration since Apk
can be calculated once and stored.

cThe method was invented independently by M. Hestenes [Hes51] and E. Stiefel [Sti52], who later
collaborated on the famous paper of 1952.

1



164 Iterative Linear Solvers

• The inner product of two vectors.

• The sum of a vector and a scalar times a vector.

Since most of the calculation in CG will be taken up by the matrix-vector products, it is
ideally suited for use on sparse matrices. Whereas a dense matrix-vector inner product
takes O(n2) floating point operations, if the matrix is sparse, this can be reduced to
O(nzero), where nzero is the number of nonzero matrix elements.

To close this section a number of related details for the CD and CG algorithms will be
shown.

Lemma 4

(ri,pj) = 0 for 0 ≤ j < i ≤ n (11.44)

(ri,pi) = (ri, ri) for i ≤ n (11.45)

(ri, rj) = 0 for 0 ≤ i < j ≤ n (11.46)

−(rk+1, Apk)

(pk, Apk)
=

(rk+1, rk+1)

(rk, rk)
(11.47)

(pk, rk)

(pk, Apk)
=

(rk, rk)

(pk, Apk)
(11.48)

Proof. (11.44), (11.45), and (11.46) are by induction on n. (11.47) and (11.48) then
follow immediately from this. Details are left as an exercise. Equation (11.45) arises
interestingly if we ask under what circumstances the conjugate gradient residual is
exactly zero. It can be shown that ri+1 = 0 if and only if (ri,pi) = (ri, ri).

As a final consideration, notice that although the gradient algorithms guarantee that
the error ‖ z − xk ‖ is reduced at each iteration, it is not the case that the residual
‖ h−Axk ‖ is also reduced. Of course, the overall trend is for the residual to be reduced,
but from step to step, relatively large fluctuations may be observed. There are several
generalizations of the basic Hestenes-Stiefel CG algorithm, known as residual reducing
methods, which are guaranteed to reduce the residual at each step. For more details
see Paige and Saunders [PS82] and Chandra [Cha78].

11.2.7 Finite Precision Arithmetic

The exact convergence implied by the Conjugate Direction Theorem is never achieved
in practice with CG since the search vectors are computed recursively and tend to
loose their A-orthogonality with time. CD methods were originally conceived as being
“direct” in the sense of yielding the “exact” solution after a finite sequence of steps,
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the number of which was known in advance. It soon became apparent that CG could
be used as an iterative method. One can show that [Cha78]:

‖ x− xk ‖A≤‖ x− x0 ‖A
(

1−√κ
1 +
√
κ

)2k

(11.49)

where κ ≡ λmax/λmin is the condition number of the matrix and ‖ x ‖A≡
√

(x, Ax). If

the condition number is very nearly one, then (1−√κ)/(1 +
√
κ) is very small and the

iteration converges rapidly. On the other hand if κ = 105 it may take several hundred
iterations to get a single digit’s improvement in the solution. But (11.49) is only an
upper bound and probably rather pessimistic unless the eigenvalues of the matrix are
well separated. For some problems, a comparatively small number of iterations will
yield acceptable accuracy. And in any event, the convergence can be accelerated by a
technique known as preconditioning.

The idea behind preconditioning is to solve a related problem having a much smaller
condition number, and then transform the solution of the related problem into the one
you want. If one is solving Ax = h, then write this instead as

Ax = h (11.50)

AC−1Cx = h

A′x′ = h

where A′ ≡ AC−1 and Cx ≡ x′. To be useful, it is necessary that

• κ(A′)� κ(A)

• Cx = h should be easily solvable.

In this case, CG will converge much more rapidly to a solution of A′x′ = h than of
Ax = h and one will be able to recover x by inverting Cx = x′. Alternatively, one
could write the preconditioned equations as

Ax = h (11.51)

DAx = Dh

A′x = h′

where DA ≡ A′ and Dh ≡ h′.

The most effective preconditioner would be the inverse of the original matrix, since
then CG would converge in a single step. At the other extreme, the simplest precondi-
tioner from a computational standpoint would be a diagonal matrix; whether any useful
preconditioning can be obtained from so simple a matrix is another matter. Between
these two extremes lies a vast array of possible methods many of which are based upon
an approximate factorization of the matrix. For example one could imagine doing a
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Cholesky decomposition of the matrix and simply throwing away any nonzero elements
which appear where the original matrix had a zero. In other words, one could en-
force the sparsity pattern of A on its approximate factorization. For details on these
“incomplete factorization” methods see [Man80],[Ker78], and [GvL83], for example.

11.2.8 CG Methods for Least-Squares

Conjugate gradient can be extended to the least squares solution of arbitrary linear
systems. Solutions of the normal equations

ATAx = ATh (11.52)

are critical points of the function

‖ Ax− h ‖2≡ ((Ax− h), (Ax− h)). (11.53)

Note that ATA is always symmetric and nonnegative. The basic facts for least-squares
solutions are these: if the system Ax = h is overdetermined, i.e., if there are more rows
than columns, and if the columns are linearly independent, then there is a unique least-
squares solution. On the other hand, if the system is underdetermined or if some of the
columns are linearly dependent then the least-squares solutions are not unique. (For a
complete discussion see the book by Campbell and Meyer [CM79].) In the latter case,
the solution to which CG converges will depend on the initial approximation. Hestenes
[Hes75] shows that if x0 = 0, the usual case, then CG converges to the least-squares
solution of smallest Euclidean norm.

In applying CG to the normal equations avoid explicitly forming the products ATA.
This is because the matrix ATA is usually dense even when A is sparse. But CG does
not actually require the matrix, only the action of the matrix on arbitrary vectors. So
one could imagine doing the matrix-vector vector multiplies ATAx by first doing Ax and
then dotting AT into the resulting vector. Unfortunately, since the condition number
of ATA is the square of the condition number of A, this results in slowly convergent
iteration if κ(A) is reasonably large. The solution to this problem is contained, once
again, in Hestenes’ and Stiefel’s original paper [HS52]. The idea is to apply CG to the
normal equations, but to factor terms of the form ATh−ATAx into AT (h−Ax), doing
the subtraction before the final matrix multiplication. The result is

Algorithm 7 Conjugate Gradient Least Squares (CGLS) Choose x0. Put s0 =

1
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h− Ax0, r0 = p0 = AT (h− Ax0) = AT s0,q0 = Ap0. Then for k = 0, 1, 2, . . .

αk+1 = (rk ,rk)
(qk ,qk)

xk+1 = xk + αk+1pk
sk+1 = sk − αk+1qk
rk+1 = AT sk+1

βk+1 = (rk+1,rk+1)
(rk,rk)

pk+1 = rk+1 + βk+1pk
qk+1 = Apk+1

(11.54)

[Cha78] shows that factoring the matrix multiplications in this way results in improved
rounding behavior.

For a more detailed discussion of the applications of CGLS see [HS52], [Läu59], [Hes75],
[Law73], and [Bjö75]. Paige and Saunders [PS82] present a variant of CGLS called
LSQR which is very popular since it is freely available through the Transactions on
Mathematical Software. [PS82] also has a very useful discussion of stopping criteria for
least squares problems. Our experience is that CGLS performs just as well as LSQR
and since the CG code is so easy to write, it makes sense to do this in order to easily take
advantage of the kinds of weighting and regularization schemes that will be discussed
later.

11.2.9 Computer Exercise: Conjugate Gradient

Write a program implementing CG for symmetric, positive definite matrices. Consider
the following matrix, right-hand side, and initial approximation:

n=6;

A = Table[1/(i+j-1),{i,n},{j,n}];

h = Table[1,{i,nx}];

x = Table[0,{i,nx}];

To switch to floating point arithmetic, use i+j−1. instead of i+j−1 in the specification
of the matrix.

The first step is to familiarize yourself with CG and make sure your code is working.
First try n = 4 or n = 5. On a PC, floating point arithmetic should work nearly
perfectly in the sense that you get the right answer in n iterations. Now go to n = 6.
You should begin to see significant discrepancies between the exact and floating point
answers if you use only n iterations. On other machines, these particular values of n
may be different, but the trend will always be the same.
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Try to assess what’s going on here in terms of the numerical loss of A-orthogonality of
the search vectors. You’ll need to do more than look at adjacent search vectors. You
might try comparing p0 with all subsequent search vectors.

Now see if you can fix this problem simply by doing more iterations. If you get the
right answer ultimately, why? What are the search vectors doing during these extra
iterations. This is a subtle problem. Don’t be discouraged if you have trouble coming
up with a compelling answer.

Are the residuals monotonically decreasing? Should they be?

What’s the condition number of the matrix for n = 6?

11.3 Practical Implementation

11.3.1 Sparse Matrix Data Structures

Clearly one needs to store all of the nonzero elements of the sparse matrix and enough
additional information to be able to unambiguously reconstruct the matrix. But these
two principles leave wide latitude for data structures.d It would seem that the more
sophisticated a data structure, and hence the more compact its representation of the
matrix, the more difficult are the matrix operations. Probably the simplest scheme is
to store the row and column indices in separate integer arrays. Calling the three arrays
elem (a real array containing the nonzero elements of A), irow and icol, one has

elem(i) = A(irow(i), icol(i)) i = 1, 2, . . . , NZ (11.55)

where NZ is the number of nonzero elements in the matrix. Thus if the matrix is




1 0 0 4
3 −2 0 0
0 0 −1 0




then elem = (1, 4, 3,−2,−1), irow = (1, 1, 2, 2, 3), and icol = (1, 4, 1, 2, 3). The storage
requirement for this scheme is nzero real words plus 2 × nzero integer words. But
clearly there is redundant information in this scheme. For example, instead of storing
all of the row indices one could simply store a pointer to the beginning of each new
row within elem. Then irow would be (1, 3, 5, 6). The 6 is necessary so that one knows
how many nonzero elements there are in the last row of A. The storage requirement for
this scheme (probably the most common in use) is nzero real words plus nzero+nrow
integer words, where nrow is the number of rows in A. In the first scheme, call it the

dA well-written and thorough introduction to sparse matrix methods is contained in Serge Pissanet-
sky’s book Sparse Matrix Technology [Pis84].
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full index scheme, algorithms for matrix vector inner products are very simple. First,
y = Ax:

∀k y(irow(k)) = y(irow(k)) + elem(k) ∗ x(icol(k)). (11.56)

And for y = ATx:

∀k y(icol(k)) = y(icol(k)) + elem(k) ∗ x(irow(k)). (11.57)

It is left as an exercise to construct similar operation within the row-pointer scheme.
The matrix-vector inner product in the row-pointer scheme amounts to taking the
inner product of each sparse row of the matrix with the vector and adding them up.
If the rows are long enough, this way of doing things amounts to a substantial savings
on a vectorizing computer since each row-vector inner product vectorizes with gather-
scatter operations. At the same time, the long vector length would imply a substantial
memory economy in this scheme. On the other hand, if the calculation is done on a
scalar computer, and if memory limitations are not an issue, the full-index scheme is
very efficient in execution since partial sums of the individual row-vector inner products
are accumulated simultaneously. For the same reason, a loop involving the result vector
will be recursive and hence not easily vectorized.

11.3.2 Data and Parameter Weighting

For inverse problems one is usually interested in weighted calculations: weights on data
both to penalize(reward) bad(good) data and to effect a dimensionless stopping criterion
such as χ2, and weights on parameters to take into account prior information on model
space. If the weights are diagonal, they can be incorporated into the matrix–vector
multiply routines via:

∀k y(icol(k)) = y(icol(k)) + elem(k) ∗ x(irow(k)) ∗W1(irow(k)) (11.58)

for row or data weighting and

∀k y(irow(k)) = y(irow(k)) + elem(k) ∗ x(icol(k)) ∗W2(icol(k)) (11.59)

for column or parameter weighting. Here, W1 and W2 are assumed to contain the
diagonal elements of the weighting matrices.

11.3.3 Regularization

Just as most real inverse calculations involve weights, most real inverse calculations
must be regularized somehow. This is because in practice linear least squares calcula-
tions usually involve singular matrices or matrices that are numerically singular (have
very small eigenvalues). Regularization is the process by which these singularities are
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tamed. We saw two different examples of regularization in Chapter 5. The first was
truncating the SVD. We can throw away zero or small singular values and that regu-
larizes the problem. But we also found that in the presence of a model null space it
was useful to be able to penalize the size of the solution as well as the data misfit.

In other words we replaced the minimization problem

min ‖ Ax− h ‖2 (11.60)

with

min ‖ Ax− h ‖2 + ‖ x ‖2 . (11.61)

The first term is the data misfit, and the second is the “regularization” term. As shown
here, the two aspects of the minimization (make the data misfit small, make the model
norm small) get equal weight.

Now let us go two steps beyond this. First, let us introduce a fudge factor λ to control
the tradeoff between the two terms. Next, let us consider the possibility of minimizing
not the norm of the model itself, but the norm of some linear function of the model
Rh.

min ‖ Ax− h ‖2 +λ ‖ Rx ‖2 (11.62)

If R = I, then we’re back to our familiar regularization. But now suppose that R ≡
∂n, n = 0, 1, 2, . . . and ∂n is an n− th order discrete difference operator. In this case the
term ‖ Rx ‖2 penalizes the slope, roughness, or higher order derivative of the model.
Penalizing roughness would be useful if we want a smooth solution.

The “normal equations” associated with this generalized objective function, obtained
by setting the derivative of (11.62) equal to zero, are

(ATA + λRTR)x = ATh. (11.63)

This sort of regularization is straightforward to implement in a sparse matrix framework
by augmenting the matrix with the regularization term:

Ã ≡
(

A√
λR

)
.

From this you can tell right away that R must have the same number of columns as A.
But in principle it can have any number of rows. For example, we might use

R =




1 −1 0 · · ·
0 1 −1 · · ·

...
0 · · · 1 −1
0 0 · · · 1



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which is square and nonsingular, or we might use

R =




1 −1 0 · · ·
0 1 −1 · · ·

...
0 · · · 1 −1




which is singular but has the same null space as the continuous derivative operator;
i.e., it maps constant vectors into 0.

We must also augment the right hand side, with a number of zeros equal to the number
of rows in the regularization matrix. We write the augmented right hand side

ỹ ≡
(

y
0

)
.

Since ÃT ỹ = ATy and ÃT Ã = ATA + λRTR, the least squares solutions of Ãx = ỹ
satisfy

(ATA + λRTR)x = ATh.

So to incorporate any regularization of the form of (11.62) all one has to do is augment
the sparse matrix. Most commonly this means either damping, in which case R is
diagonal, or second-difference smoothing, in which case R is tridiagonal.

11.3.4 Jumping Versus Creepinge

The pseudo-inverse A† itself has something of a smoothness condition built in. If the
matrix A has full column rank and the number of rows is greater than or equal to
the number of columns (in which case the system is said to be overdetermined) then
the least squares solution is unique. But if the system is underdetermined, the least
squares solution is not unique since A has a nontrivial null space. All of the least
squares solutions differ only by elements of the null space of A. Of all of these, the
pseudo-inverse solution is the one of smallest norm. That is, ‖ x† ‖≤‖ x ‖ for every x
such that ATAx = ATy, as we saw in Chapter 5.

This means, for example, that in a nonlinear least squares problem, where we perturb
about a reference model and compute this perturbation at each step by solving a linear
least squares problem, then the size of the steps will be minimized if the pseudo-inverse
is used. This has led to the term “creeping” being used for this sort of inversion. On
the other hand, if at each nonlinear step we solve for the unknown model directly, then
using the pseudo-inverse will smallest norm will enforce the smalleste norm property on
the model itself, not the perturbation of this model about the background. This is called
“jumping” since the size of the change in the solution between nonlinear iterations is
not constrained to be small. The terms creeping and jumping are due to Parker [Par94].

eThis section and the next are taken from [SDG90].
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172 Iterative Linear Solvers

This point merits a brief digression since the effects of damping or smoothing will be
different according as one is doing jumping or creeping. Suppose the nonlinear inverse
problem is: given y, find x such that y− F (x) is minimized in some sense. Expanding
the forward problem F to first order in a Taylor series about some model x0 gives

y = y0 + F ′(x0)(x− x0) (11.64)

where y0 ≡ F (x0). Denoting the Jacobian F ′ by A, there are two alternative least
squares solutions of the linearized equations

Jumping xj = A†(Ax0 + y− y0) (11.65)

Creeping xc = x0 + A†(y− y0) (11.66)

differing only in how the pseudo-inverse is applied.

In creeping x− x0 is a minimum norm least squares solution of the linearized forward
equations, whereas in jumping the updated model x is itself a minimum norm least
squares solution. The difference between the jumping and creeping (in the absence of
regularization) is readily seen to be

xj − xc = (A†A− I)x0. (11.67)

Expressing the initial model in terms of its components in the row space and null space
of A,

x0 = xrow0 + xnull0 (11.68)

and noting that

xrow0 = A†Ax0 (11.69)

then

xj = xrow0 + A†(y − y0) (11.70)

and (11.67) becomes

xj − xc = −xnull0 . (11.71)

Thus, the creeping and jumping solutions differ by the component of the initial model
that lies in the null space of A: some remnants of the initial model that appear in xc

are not present in xj. Only if A is of full column rank (giving A†A = I ) will the two
solutions be the same for any initial guess. In the next sections it will be seen that this
analysis must be modified when regularization is employed.

11.3.5 How Smoothing Affects Jumping and Creeping

In the absence of regularization, the jumping and creeping solutions differ only by the
component of the initial model in the null space of the Jacobian matrix. Regulariza-
tion changes things somewhat since the matrix associated with the regularized forward
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problem has no nontrivial null space. Recall that for jumping, the linearized problem,
with solution xj, is

Axj = Ax0 + y − y0 (11.72)

whereas for creeping
A(xc − x0) = y − y0. (11.73)

The addition of regularization produces the augmented systems

Ãxj =

(
y− y0 + Ax0

0

)
(11.74)

and

Ã(xc − x0) =

(
y − y0

0

)
. (11.75)

Inverting, one has

xj = Ã†
(

y − y0 + Ax0

0

)
= Ã†

(
y − y0

0

)
+ Ã†

(
Ax0

0

)
. (11.76)

and

xc − x0 = Ã†
(

y − y0

0

)
. (11.77)

Thus

xj − xc = Ã†
(
Ax0

0

)
− x0. (11.78)

For λ > 0 the augmented matrix is nonsingular,f therefore one can write

x0 = Ã†Ãx0.

Using the definition of Ã

x0 = Ã†
(

A√
λR

)
x0 = Ã†

(
Ax0

0

)
+ Ã†

(
0√
λRx0

)
. (11.79)

Finally from (11.78) and (11.79) one obtains

xj − xc = −Ã†
(

0√
λRx0

)
. (11.80)

As in (11.71), the difference between the two solutions depends on the initial model.
But when smoothing is applied, the creeping solution possesses components related to
the slope of x0 (first difference smoothing) or to the roughness of x0 (second difference
smoothing) which are not present in the jumping solution. An important corollary of
this result is that for smooth initial models, jumping and creeping will give the same
results when roughness penalties are employed to regularize the calculation. Exam-
ples illustrating the comparative advantages of jumping and creeping are contained in
[SDG90].

fIf the columns of the regularization operator are linearly independent, then the columns of the
augmented matrix are too.
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11.4 Sparse Singular Value Calculationsg

The singular value decomposition is one of the most useful items in the inverter’s
toolkit. With the SVD one can compute the pseudo-inverse solution of rectangular
linear systems, analyze resolution (within the linear and Gaussian assumptions), study
the approximate null space of the forward problem, and more. The now classical Golub-
Reinsch approach to SVD [GR70] begins by reducing the matrix to block bidiagonal
form via a sequence of transformations known as Householder transformations. The
Householder transformations annihilate matrix elements below the diagonal, one col-
umn at a time. Unfortunately, after each transformation has been applied, the sparsity
pattern in the remaining lower triangular part of the matrix is the union of the sparsity
pattern of the annihilated column and the rest of the matrix. After a very few steps,
one is working with nearly full intermediate matrices. This makes conventional SVD
unsuitable for large, sparse calculations. On the other hand, for some problems, such
as studying the approximate null space of the forward problem, one doesn’t really need
the entire SVD; it suffices to compute the singular vectors associated with the small
singular values (“small” here is defined relative the level of noise in the data). Or per-
haps from experience one knows that one must iterate until all those eigenvectors down
to a certain eigenvalue level have been included in the solution. Conventional SVD
gives no choice in this matter, it’s all or nothing. In this section we shall consider the
use of iterative methods such as conjugate gradient for computing some or all singular
value/singular vector pairs.

11.4.1 The Symmetric Eigenvalue Problem

For convenience (actually, to be consistent with the notation in [Sca89]) here is an
equivalent form of the CG algorithm for symmetric, positive-definite systems Ax = y.

Algorithm 8 Method of Conjugate Gradients Let x0 = 0, r0 = p1 = y and
β1 = 0. Then for i = 1, 2, . . .

βi = (ri−1,ri−1)
(ri−2,ri−2)

pi = ri−1 + βipi−1

αi = (ri−1,ri−1)
(pi,Api)

xi = xi−1 + αipi
ri = ri−1 − αiApi

(11.81)

Now define two matrices Rk and Pk whose columns are, respectively, the residual and
search vectors at the k− th step of CG; Rk = (r0, . . . , rk−1) and Pk = (p1, . . . ,pk). Let
Bk be the bidiagonal matrix with ones on the main diagonal and (−βi, i = 2, . . . , k)

gThis section is based upon [Sca89]
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on the superdiagonal (βi are the CG scale factors). Finally, let ∆k be the matrix
diag(ρ0, . . . , ρk−1), where ρi ≡‖ ri ‖.

Using the recursion
pi+1 = ri + βi+1pi i = 2, . . . , k

and the fact that p1 = r0, it follows by direct matrix multiplication that

Rk = PkBk.

Therefore
Rk

TARk = Bk
TPk

TAPkBk.

The reason for looking at Rk
TARk is that since Rk is orthogonal (cf. Lemma 4), the

matrix Rk
TARk must have the same eigenvalues as A itself.

But since the p vectors are A-orthogonal, it follows that

Pk
TAPk = diag[(p1, Ap1), . . . , (pk, Apk)].

Using this and normalizing the R matrix with ∆ gives the following tridiagonalization
of A

Tk = ∆k
−1Bk

Tdiag[(p1, Ap1), . . . , (pk, Apk)]Bk∆k
−1. (11.82)

Carrying through the matrix multiplications gives the elements of Tk

(Tk)i,i =

[
1

αi
+

βi
αi−1

i = 1, . . . , k

]
(11.83)

(Tk)i,i+1 = (Tk)i+1,i =

[
−
√
βi+1

αi
i = 1, . . . , k − 1

]
(11.84)

In other words, just by doing CG one gets a symmetric tridiagonalization of the matrix
for free. Needless to say, computing the eigenvalues of a symmetric tridiagonal matrix
is vastly simpler and less costly than extracting them from the original matrix. For
rectangular matrices, simply apply the least squares form of CG and use the α and β
scale factors in (11.83) and (11.84), to get a symmetric tridiagonalization of the normal
equations. Then, just take their positive square roots to get the singular values. The
calculation of the eigenvalues of symmetric tridiagonal matrices is the subject of a rather
large literature. See [Sca89] for details.

The following example illustrates the idea of iterative eigenvalue computation. We will
consider the Hilber matrix, whose i − j element is 1

i+j+1
. This matrix arises in the

theory of approximation and is known to be highly ill-conditioned.h

The matrix in question is an eighth-order Hilbert matrix:

hA simple explanation for this was contributed to the Usenet news group sci.math by Zdislav V.
Kovarik. The idea is you can interpret the i − j element as the inner product of xi and xj on the
interval [0, 1]. Now, the cosine of the angle between xk and x(k+ 1) is just 1

2∗k+2 . So you can see that
as k increases, this matrix. which consists of the scalar products of these almost linearly dependent
vectors, is bound to be nearly singular.
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nx =8;

A = Table[1/(i+j-1.),{i,nx},{j,nx}];

The condition number of this matrix is 1010. The exact solution to the system Ax = y,
where y consists of all ones is:

(−8, 504,−7560, 46200,−138600, 216216,−168168, 51480).

After just 5 iterations, using 16 digits of precision, CG produces the following solution:

(0.68320,−4.01647,−127.890, 413.0889,−19.3687,−498.515,−360.440, 630.5659)

which doesn’t look very promising. However, even after only 5 iterations we have
excellent approximations to the first 4 eigenvalues. The progression towards these
eigenvalues is illustrated in the following table, which shows the fractional error in each
eigenvalue as a function of CG iterations. Even after only one iteration, we’ve already
got the first eigenvalue to within 12%. After 3 iterations, we have the first eigenvalue
to within 1 part in a million and the second eigenvalue to within less than 1%.

Eigenvalue 1.6959389 0.2981252 0.0262128 0.0014676 0.0000543 Iteration
Fractional 0.122 1

error in 0.015 0.52720 2
CG-computed 1.0 10−5 0.006 1.284 3

eigenvalues 9.0 10−12 1.9 10−7 0.002 1.184 4
0.0 7.3 10−15 1.13 10−8 8.0 10−4 1.157 5

11.4.2 Finite Precision Arithmetic

Using CG or Lanczos methods to compute the spectrum of a matrix, rather than simply
solving linear systems, gives a close look at the very peculiar effects of rounding error
on these algorithms. Intuitively one might think that the main effects of finite preci-
sion arithmetic would be a general loss of accuracy of the computed eigenvalues. This
does not seem to be the case. Instead, “spurious” eigenvalues are calculated. These
spurious eigenvalues fall into two categories. First, there are numerically multiple eigen-
values; in other words duplicates appear in the list of computed eigenvalues. Secondly,
and to a much lesser extent, there are extra eigenvalues. The appearance of spurious
eigenvalues is associated with the loss of orthogonality of the CG search vectors. A
detailed explanation of this phenomenon, which was first explained by Paige [Pai71] is
beyond the scope of this discussion. For an excellent review see ([CW85], Chapter 4).
In practice, the duplicate eigenvalues are not difficult to detect and remove. Various
strategies have been developed for identifying the extra eigenvalues. These rely either
on changes in the T matrix from iteration to iteration (in other words, on changes in
Tm as m increases), or differences in the spectra between T (at a given iteration) and
the principle submatrix of T formed by deleting its first row and column. An extensive
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discussion of the tests used for detecting spurious eigenvalues is given by [CW85]. It is
also not obvious how many iterations of CG are necessary to generate a given number
of eigenvalues. At best it appears that for “large enough [number of iterations] m, every
distinct eigenvalue of A is an eigenvalue of Tm”—the Lanczos phenomenon[CW80]. On
the other hand, the spurious eigenvalues crop up because one has been content to let
the search vectors lose orthogonality: computing a lot of iterations, throwing away a
lot of duplicate eigenvalues, and relying on the Lanczos phenomenon to assure that
eventually one will calculate all of the relevant eigenvalues. The examples in [CW85]
and the example that will be shown presently would seem to indicate that that is not
an unreasonable goal. On the other hand, many (perhaps most) practitioners of the
Lanczos method advocate some sort of partial or selective reorthogonalization. In other
words, orthogonalize by hand the current search vector with respect to the last, say, N
vectors, which then must be stored. Some examples of reorthogonalized Lanczos are
given by [Par80]. It is difficult to do justice to the controversy which surrounds this
point; suffice it to say, whether one uses reorthogonalized methods or not, care must be
taken to insure, on the one hand, that spurious eigenvalues are not mistakenly included,
and on the other, that reorthogonalization is sufficiently selective that the speed of the
method is not completely lost.

Here is a simple example of the use of CG-tridiagonalization from [Sca89]. The problem
is a small, 1500 or so rays, travel time inversion of reflection seismic data. The model
has about 400 unknown elastic parameters. In the table below are listed the first 40
singular values of the Jacobian matrix computed with an SVD (on a Cray X-MP) and
using Conjugate Gradient. Duplicate singular values have been removed. The results
are extremely close except for the three spurious singular values 7, 24, and 38. In all I
was able to compute about half of the nonzero singular values without difficulty. Most
of these were accurate to at least 6 or 7 decimal places.
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SINGULAR VALUES SVD CG
1 23.762031619755 23.7620316197567050
2 19.768328927112 19.7683289271078131
3 16.578534293957 16.5785342939616456
4 14.354045541174 14.3540455411735757
5 13.006121206565 13.0061212065686460
6 12.293303623664 12.2933036236672788
7 11.610930621056 12.1592302767906455
8 10.895471779225 11.6109306210545331
9 10.670981506845 10.8954717792268974
10 10.334874696665 10.6709815068454394
11 10.123412306695 10.3348746966737313
12 9.955310042953 10.1234123067005579
13 9.6454782226432 9.95531004295387922
14 9.5529461513199 9.64547822264931298
15 9.4273903010306 9.55294615132859115
16 9.3371719187833 9.42739030103272846
17 9.2486487219101 9.33717191878789610
18 9.2020745407381 9.24864872191587062
19 9.1365345361384 9.20207454074499109
20 9.1105716770474 9.13653453614481603
21 8.9573315416959 9.11057167705186344
22 8.897862083302 8.95733154170239976
23 8.6901794080491 8.89786208330824335
24 8.6263321041541 8.86770907443914380
25 8.3362097313284 8.69017940805813782
26 8.253249495322 8.62633210415555185
27 8.1701784446507 8.33620973133915943
28 8.009740159019 8.25324949532812213
29 7.9256810850057 8.17017844465582410
30 7.8102692299697 8.00974015902995795
31 7.6624515175111 7.92568108500504187
32 7.5651235246644 7.81026922996729356
33 7.348695068023 7.66245151751159326
34 7.2070814800585 7.56512352466241511
35 7.1082737154214 7.34869506802239880
36 6.9528330413513 7.20708148005766369
37 6.9267489577491 7.10827371542024911
38 6.7567717799808 7.05394975396781465
39 6.7316199620107 6.95283304135091251
40 6.6700456432165 6.92674895774645272
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11.4.3 Explicit Calculation of the Pseudo-Inverse

Finally, we point out a clever result of Hestenes which seems to have been largely
ignored. In the paper [Hes75] he proves the following. Let r be the rank of A an
arbitrary matrix, and let p and q be the CGLS search vectors, and let x0 = 0. Then

A† =

[
p0p0

(q0,q0)
+

p1p1

(q1,q1)
+ · · · pr−1pr−1

(qr−1,qr−1)

]
AT (11.85)

is the generalized pseudo-inverse of A. A generalized pseudo-inverse satisfies only two
of the four Penrose conditions, to wit:

A†AA† = A† (11.86)

AA†A = A (11.87)

To illustrate this result, consider the following least squares problem:




1 2
−4 5
−1 3
2 −7




[
x
y

]
=




5
6
5
−12


 .

The column rank of the matrix is 2. It is straightforward to show that

[
ATA

]−1
=

1

689

[
22 35
35 87

]
.

Therefore the pseudo-inverse is

A† =
[
ATA

]−1
AT =

1

689

[
157 −173 18 −71
79 −30 31 −84

]
.

Now apply the CGLS algorithm. The relevant calculations are

p0 =

[
−48
139

]
, q0 =




230
887
465
−1069


 .

p1 =

[
9.97601
4.28871

]
, q1 =




18.55343
−18.46049

2.89012
−10.06985


 , x2 =

[
1.00000
2.00000

]
,

which is the solution. Recalling (11.85)

A† =

[
p0p0

(q0,q0)
+

p1p1

(q1,q1)
+ · · · pr−1pr−1

(qr−1,qr−1)

]
AT (11.88)
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one has [
p0p0

(q0,q0)
+

p1p1

(q1,q1)

]
=

[
0.12627 0.05080
0.05080 0.03193

]
.

But this is nothing more than
[
ATA

]−1
which was previously calculated:

[
ATA

]−1
=

1

689

[
22 35
35 87

]
=

[
0.12627 0.05080
0.05080 0.03193

]
.

In this particular case A†A = I so the parameters are perfectly well resolved in the
absence of noise.

Exercises

1. Prove Equation (11.22).

2. Show that

f(z)− f(xk) = −1

2
(xk − z, A(xk − z))

where z is a solution to Ax = h and A is a symmetric, positive definite matrix.

3. Prove Lemma 4.

4. With steepest descent, we saw that in order for the residual vector to be exactly
zero, it was necessary for the initial approximation to the solution to lie on one
of the principle axes of the quadratic form. Show that with CG, in order for the
residual vector to be exactly zero we require that

(ri,pi) = (ri, ri)

which is always true by virtue of Lemma 3.
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[Sti52] E. Stiefel. Über einige Methoden der Relaxationsrechnung. Zeit. angew.
Math. Physik, 3, 1952.

[You71] D. M. Young. Iterative Solution of Large Linear Systems. Academic, N.Y.,
1971.

1



Chapter 12

More on the Resolution-Variance
Tradeoff

12.1 A Surfer’s Guide to Backus-Gilbert Theory

The basic reference is [BG67]. The standard discrete inverse problem is

d = Am + e (12.1)

where A is the derivative of the forward problem (an n by m matrix), m is a vector of
unknown model parameters, and d contains the observed data. m is a vector in Rm.
However, it represents a discretization of the model slowness s(r), which is a scalar
function defined on a closed subset Ω of RD, D ∈ (1, 2, 3 . . .). It will be assumed that
the set of all possible models lies in some linear function space M.

It is useful to introduce an orthonormal basis of functions (we will use our old
friends the pixel functions) which span the model space M. Suppose that Ω is com-
pletely covered by m closed, convex, mutually disjoint sets (cells) σ ∈ RD : Ω = ∪ σi
such that σi ∩ σj = � if i 6= j. The basis functions are then defined to be

hi(r) =

{
ν
−1/2
i if r ∈ σi

0 otherwise

where νi is the volume of the ith cell. The choice of the normalization ν
−1/2
i is made

to remove bias introduced by cell size. If a constant cell size is adopted, ν
−1/2
i can be

replaced with 1. Given the definition of hi, it is clear that
∫

Ω
hi(r)hj(r)dDr = δij.

Thus an arbitrary function can be written as an expansion in hi

m(r) =
∞∑

i=1

mihi(r) ≡ m · h(r). (12.2)
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In practice this sum will usually be truncated at a finite number of terms. For infinite
dimensional vectors it is more traditional to write the inner product as (m,h(r)) but
we will continue to use the dot notation.

A basic took of BG theory is the point spread function A. The point spread function
(PSF) is defined in a formal manner by noting that a local average of the model m(r) can
be obtained at any point r0 by integrating the model and a locally defined unimodular
function

〈m(r0)〉 =
∫

Ω
A(r, r0)m(r)dDr. (12.3)

Unimodular means that the function integrates to 1.
∫

Ω
A(r, r0)dDr = 1.

Also, it is assumed that A(r, r0) ∈ M for each r0 ∈ Ω and that the support of A is
concentrated at the point r0. Naturally, the more accurately the model is determined
at each point, the more closely the PSF resembles a delta function – at that point. So
estimating the PSF is equivalent to estimating a local average of the model. The more
delta function-like is the PSF, the more precise our estimate of the model.

Like any other function in M, the PSF can be expanded in terms of hi.

A(r, r0) =
∞∑

i=1

ai (r0) hi (r) ≡ a(r0) · h(r).

Thus (12.2) and (12.3) imply that

〈m(r0)〉 =
∞∑

i=1

ai (r0)mi = a (r0) ·m. (12.4)

It is clear that one can construct a PSF which will yield a local average of the model
– any approximation to a delta function will do. Unfortunately, there is a tradeoff
between the sharpness of the PSF and the variance, or RMS error, of the solution. To
show this, BG assume that the local average of the model is a linear function of the
data

〈m(r0)〉 =
n∑

i=1

bi (r0) di = b (r0) · d = (b (r0) , Am + e) (12.5)

where b is to be determined. For the moment let’s neglect the noise–for zero mean
noise we can just take expectations. Comparing (12.4) and (12.5) one sees that the
expansion coefficients of the PSF are simply

a (r0) = ATb (r0) (12.6)

Now, how one measures the “width” of the PSF is largely a matter of taste. Nolet
[Nol85] makes the following natural choice

W (r0) = cD

∫

Ω
A (r, r0)2 |r− r0|D+1 dDr

1
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where cD is a scale factor chosen to make W have as simple a form as possible. For
example, Nolet chooses c3 = 56π/9. Plugging the definition of the pixel functions and
of the PSF into (12.6) it follows that

W (r0) =
∑

i,j,k

fiAjiAkibj (r) bk (r0) (12.7)

where
fi = cD

∫

Ω
|r− r0|D+1 hi (r)2 dDr ≈ cD |r̂i − r0|D+1

and where r̂i is the centroid of the ith cell. Equation (12.7) shows how the width of the
PSF depends on the b coefficients. Now all one needs is a similar expression for the
error of the average model value 〈m (r0)〉

σ2 = Var〈m (r0)〉 =
n∑

i,j=1

bi (r0) bj (r0) Cov(di, dj) = b (r0) · b (r0) .

The last equality follows since if one assumes that the data are uncorrelated, then
weights can always be chosen such that Cov(di, dj) = δij. Thus, it has been shown
that both the width of the PSF and the variance of the solution depend on b; Thus
one cannot tighten up the PSF without affecting the variance. The solution, at least
formally, is to introduce a tradeoff parameter, say w, and jointly minimize

J(w, r0) ≡ W (r0) + w2σ2(r0).

This last problem is straightforwardly solved but note that to compute the coefficients
b which jointly minimize the variance and the width of the PSF requires the solution
of a (large) least squares problem at each point in the model where the resolving power
is desired. For large, sparse operators A, a far more efficient approach would be using
the conjugate gradient methods outlined in Chapter 11.

12.2 Using the SVD

Now let us look at this tradeoff for a finite-dimensional problem using the SVD. Let A
be the forward modeling operator, now assumed to map Rm to Rn:

d = Am + e

where e is an n-vector of random errors. The least squares estimated model m̂ is given
by A†d, where A† is the pseudo-inverse of A.

The covariance of m̂ is E[m̂m̂T ].a We can get a simple result for this matrix using the
singular value decomposition. The singular value decomposition of A is

A = UΛV T

aAssuming that the errors are zero mean since then E[m̂] = E[A†d] = A†E[d] = 0.
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where U is an orthogonal matrix of “data” eigenvectors (i.e., they span Rn) and V is
an orthogonal matrix of “model” eigenvectors (they span Rm). Λ is the n×m diagonal
matrix of singular values λi. The pseudo-inverse of A is

A† = V Λ−1UT

where Λ−1 where denotes the m×n diagonal matrix obtained by inverting the nonzero
singular values. To keep things simple, let’s assume that the covariance of the data
errors is just the identity matrix. This will let us look at the structure of the covariance
of m̂ as a function of the forward operator alone. It is easy to see that in this case

Cov(m̂) = E[m̂m̂T ] = A†Cov(d)A†
T

= V Λ−2V T =
m∑

i=1

λ−2
i viv

T
i .

The last term on the right is the sum of the outer products of the columns of V
(these are the model space eigenvectors). So the covariance can be seen as a weighted
projection operator onto the row space of A, with weights given by the inverse-square
of the singular values.

With this it is not difficult to see that the j-th diagonal element of Cov(m̂), which is
the variance of the j-th model parameter is

Var(m̂j) =
m∑

i=1

λ−2
i (vi)

2
j

where (vi)j is the j-th component of the i-th eigenvector.

If the rank of A is less than m, say r, then all of the sums involving the pseudo-inverse
are really only over the r eigenvectors/eigenvalues. In particular

Var(m̂j) =
r∑

i=1

λ−2
i (vi)

2
j .

This is because A = UΛV T = UrΛrV
T
r where the subscript r means that we have

eliminated the terms associated with zero singular values.

Now suppose we decide not to use all the r model eigenvectors spanning the row space
of A?b For example we might need only p eigenvectors to actually fit the data. Let
us denote by m̂p the resulting estimate of m̂ (which is obviously confined to the p-
dimensional subspace of Rm spanned by the first p model singular vectors):

m̂p ≡
p∑

i=1

vi
uTi d

λi

where ui is the i-th column of U (i.e., the i-th data eigenvector). Using the result above
for the variance of the j-th component of m̂ we can see that

Var(m̂p
j) =

p∑

i=1

λ−2
i (vi)

2
j .

bRemember that if a vector is in the null space of a matrix, then it is orthogonal to all the rows of
the matrix. Hence the row space and the null space are orthogonal complements of one another.
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It follows that the variance of the j-th component of m̂p is monotonically nondecreasing
with p. So, while we can formally decrease the variance by using fewer eigenvectors, we
end up with a less resolution because we won’t have enough structure in the remaining
eigenvectors to characterize the model.

In general we cannot compute the bias for an estimate of the true model without taking
into account the discretization, but let’s neglect this for the moment and assume that A
represents the exact forward problem and that the true model lies within Rm. The bias
of m̂r is the component of the true model in the row space of A, assuming zero-mean
errors.c So, apart from the component of the true model in the row space of A, the bias
of m̂p is

bias(m̂p) = E[m̂p − m̂r] =
r∑

i=p+1

vi
uTi d

λi
.
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[Bjö75] A. Björk. Methods for sparse linear least-squares problems. In J. Bunch and
D. Rose, editors, Sparse Matrix Computations. Academic, New York, 1975.

[Bra90] R. Branham. Scientific Data Analysis. Springer-Verlag, 1990.

[Bru65] H.D. Brunk. An Introduction to Mathematical Statistics. Blaisdell, 1965.

[Cas85] G. Casella. An introduction to empirical Bayes data analysis. The American
Statistician, 39:83–87, 1985.

[Cha78] R. Chandra. Conjugate gradient methods for partial differential equations.
PhD thesis, Yale University, New Haven, CT, 1978.

[CL96] B. P. Carlin and T. A. Louis. Bayes and Empirical Bayes Methods for Data
Analysis. Chapmann & Hall, 1996.

[CM79] S. Campbell and C. Meyer. Generalized inverses of linear transformations.
Pitman, London, 1979.

[CW80] J. Cullum and R. Willoughby. The Lanczos phenomenon—an interpretation
based upon conjugate gradient optimization. Linear Albegra and Applica-
tions, 29:63–90, 1980.

[CW85] J. Cullum and R. Willoughby. Lanczos Algorithms for Large Symmetric
Eigenvalue Computations. Birkhäuser, Boston, 1985.
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